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Abstract

We analyze the impact of inventor mobility between firms on knowledge diffusion,
economic growth, and welfare. Using German patent data matched with employer-
employee data, we provide evidence showing that inventor mobility between firms
is associated with knowledge diffusion. Motivated by this evidence, we develop an
endogenous economic growth model in which inventors contribute to knowledge
diffusion by moving between firms, in addition to engaging in internal R&D within
firms. Using a model calibrated with German data, we first analyze the impact of
non-compete clauses. We find that banning non-compete clauses reduces welfare by
0.38%. Furthermore, we show that optimal regulation of non-compete clauses leads
to an allocation that closely approximates the social optimum. Finally, to analyze
the impact of the decline in inventor mobility on economic growth over the past few
decades, we calibrate the model to match the observed transition path of inventor
mobility. Our results show that the decline in inventor mobility reduced growth from
internal R&D by 0.04 pp and growth from knowledge diffusion by 0.20 pp, resulting in
a total decrease in economic growth of 0.24 pp.
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1 Introduction

Inventors play a crucial role in the diffusion of knowledge between firms. As Arrow
(1962) observed, the “mobility of personnel among firms provides a way of spreading
information.” 1 Yet despite this recognition, we have limited understanding of how this
mobility affects economic growth and how policies such as non-compete clauses shape these
effects. This paper provides empirical evidence, theoretical framework, and quantitative
assessment of knowledge diffusion through inventor mobility.

We begin by documenting distinctive mobility patterns of inventors using novel German
data that link patent records with matched employer-employee information. Unlike general
workers who typically move to more productive firms, as established in previous literature
(e.g., Haltiwanger et al. (2018)), inventors frequently move to less productive establishments.
Across various productivity measures, 19% to 34% of inventor moves are to lower-ranked
firms, yet these inventors receive wage premiums approximately 2% higher than comparable
workers when changing jobs. This pattern, where inventors move down the productivity
ladder while receiving higher wage gains, suggests that less productive firms value and
compensate for the knowledge inventors bring from their previous employers.

These empirical findings motivate our theoretical framework. We develop an en-
dogenous growth model where inventors contribute to innovation through two channels:
internal R&D within firms and knowledge transfer when moving between firms. Firms
operate multiple product lines representing their accumulated knowledge capital, fol-
lowing Klette and Kortum (2004) who equate product lines with knowledge capital. The
labor market for inventors features search frictions, with firms posting costly vacancies to
attract inventors from other employers. When an inventor moves, the receiving firm gains
knowledge proportional to the productivity difference between origin and destination.
The surplus from successful matches is divided according to bargaining power, which
reflects the enforceability of non-compete clauses in the labor market.

Our modeling approach departs from Klette and Kortum (2004) by treating product
lines as continuous rather than discrete. While their framework requires tracking firm entry
and exit as firms gain or lose integer-valued product lines, our continuous formulation
allows firms to grow smoothly. This enables us to focus exclusively on job-to-job transitions
of inventors, abstracting from unemployment and off-the-job search. More importantly,
this approach permits aggregation of each firm’s state into a single variable: the ratio
of knowledge to inventors. This aggregation is essential because it reduces what would

1For evidence from recent studies, see Jaffe et al. (1993); Almeida and Kogut (1999); Song et al. (2003);
Hoisl (2007); Rosenkopf and Almeida (2003); Breschi and Lissoni (2009); Singh and Agrawal (2011); Kaiser
et al. (2015); Rahko (2017); Braunerhjelm et al. (2020).
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otherwise be a two-dimensional state space problem to a one-dimensional one, ensuring
tractability while preserving the economic mechanisms of knowledge accumulation and
diffusion.

In our model, R&D investment activities and knowledge diffusion generate inefficiencies
through an externality arising from random search, as well as the externality from creative
destruction and competition.2 The externality from random search can be further divided
into two types: congestion externalities and hold-up problems. Hosios (1990) show that in
a standard Diamond (1982), Mortensen (1982), and Pissarides (1985) (DMP) model, these
externalities can be entirely offset by appropriately setting the bargaining power. However,
because our model features heterogeneous agents, no choice of bargaining power aligns the
competitive equilibrium with the social planner’s allocation (Shimer and Smith, 2001). The
bargaining power that maximizes social welfare depends on how internal R&D activities
and knowledge diffusion affect the economy through congestion externalities and hold-up
problems.

We calibrate the model to match patterns in the German data. The calibration involves
estimating how inventor productivity evolves within firms, capturing both internal R&D
effects and knowledge gains from hiring. This estimation reveals that knowledge diffusion
accounts for approximately 17% of total innovation, with internal R&D contributing the
remainder. With these parameters, we can quantify how policies affect the trade-off
between growth benefits and resource costs.

Using the calibrated model, we first study how prohibiting non-compete clauses affects
economic growth and social welfare.3 We evaluate the transition dynamics triggered by the
ban. Prohibiting non-competes raises the surplus that poaching firms obtain from posting
vacancies, so vacancy postings rise and inventor mobility increases. Greater mobility
increases the growth rate through two channels. First, it improves the allocative efficiency
of inventors, strengthening growth driven by internal R&D. In our model, misallocation
arises from (i) frictions in the labor market for inventors, (ii) idiosyncratic shocks, and
(iii) the concavity of the internal R&D technology. By easing these distortions, higher
mobility raises growth. Second, the surge in mobility promotes knowledge diffusion across
firms, further raising growth. The economy therefore produces more output along the
transition than under the status quo. Yet firms devote more final goods to vacancy posting,

2We argue that the externality arising from random search in our model is a generalization of the
externality present in the knowledge diffusion models from previous research, such as those by Lucas and
Moll (2014) and Perla and Tonetti (2014).

3In recent years, several countries have implemented or are planning to implement prohibitions or
restrictions on non-compete clauses. For example, in April 2024, the Federal Trade Commission (FTC) banned
all non-compete agreements in the US. In May 2023, the UK Government also announced plans to limit
non-compete clauses to a maximum duration of three months.
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so consumption temporarily falls.4 As a result, consumption-equivalent welfare during the
transition is 0.38% lower than in the no-policy-change scenario. Furthermore, we find that
optimal regulation of non-compete clauses achieves an allocation and social welfare very
close to the social optimum.

Beyond policy evaluation, we use the framework to understand how the observed
decline in inventor mobility affects economic growth. Inventor mobility in Germany
declined sharply from 13% annual transition rates in 2001 to 5.1% in 2014, with similar
patterns evident in U.S. data. 5 To assess the consequences, we calibrate a transition path
where matching efficiency deteriorates to generate this decline. The results indicate that
reduced mobility lowered long-run growth by 0.24 percentage points. Most of this decline,
0.20 points, stems from weakened knowledge diffusion between firms, while 0.04 points
reflects increased misallocation of inventors across firms.

Related Literature

Our paper is most closely related to the literature on endogenous growth theory, particularly
the diffusion of technology and knowledge, including Kortum (1997), Lucas and Moll
(2014), Perla and Tonetti (2014), Akcigit et al. (2018), Buera and Oberfield (2020), Benhabib
et al. (2021), Prato (2022), Crews (2023), Shi et al. (2024).6 Similar to our study, Benhabib
et al. (2021) and Shi et al. (2024) analyze the interaction between internal R&D activity
and knowledge diffusion between agents. Within this literature, our work is most closely
aligned with Akcigit et al. (2018), Prato (2022), and Crews (2023), which model knowledge
diffusion among inventors or high-skilled workers, though they do not explicitly account
for firms and job-to-job transitions. In contrast, our research provides microfoundations for
the movement of inventors across firms and the resulting knowledge diffusion, offering new
insights into how labor market policies and changes in inventor mobility affect economic
growth.

The idea that inventor mobility between firms facilitates knowledge diffusion is sup-
ported by numerous empirical studies. One of the early studies in this literature, Almeida
and Kogut (1999), demonstrates that in regions with high levels of inventor mobility

4We interpret vacancy posting costs in our model to include not only the costs of search and hiring but
also, more generally, the various adjustment costs associated with inventors’ job-to-job transitions. For
example, these costs include inventors and their families relocating and the effort required for inventors to
build relationships with new research teams.

5A recent study by Akcigit and Goldschlag (2023a) likewise shows that the hiring rate for inventors in the
U.S. declined from 7% in 2000 to 3.5% in 2016. Although our data are at the establishment level and theirs
are at the firm level—yielding systematically higher transition rates in our sample—both series indicate that
inventor mobility was roughly cut in half over a comparable period.

6Buera and Lucas (2018) provide a survey of this literature.
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between firms, knowledge flows tend to be localized. Song et al. (2003) show that inventors
who switch firms are more likely to base their work on ideas from their previous employer
compared to other inventors at the hiring firm. Rosenkopf and Almeida (2003) analyze
pairs of firms and find that firms with higher inventor mobility also experience greater
subsequent knowledge flows. These pioneering studies have spurred further research
into the relationship between inventor mobility and knowledge spillovers (Hoisl, 2007;
Breschi and Lissoni, 2009; Singh and Agrawal, 2011; Kaiser et al., 2015; Rahko, 2017;
Braunerhjelm et al., 2020). 7 Our paper is the first to explicitly model the fundamental idea
from this empirically focused literature—that inventor mobility between firms leads to
knowledge diffusion—and to integrate it into endogenous growth theory. Additionally,
our research makes a novel empirical contribution to this literature. By comparing the
patterns of job transitions and the accompanying changes in wages between inventors and
general workers, we provide evidence that suggests inter-firm knowledge diffusion and
the associated compensation.

Our paper is complementary to recent studies that analyze learning among workers
within firms. Jarosch et al. (2021) and Herkenhoff et al. (2024) both develop frameworks
for learning from colleagues within firms. Using matched employer-employee data,
they both find significant knowledge spillovers among coworkers. Unlike these studies,
our research focuses on inventors engaged in R&D and the implications for economic
growth. Specifically, in the theoretical part, we construct an endogenous growth model,
and in the empirical part, we analyze a novel dataset that links patents with matched
employer-employee data.

Finally, our paper is related to the literature on frictional labor markets. Studies such as
Schaal (2017), Elsby and Gottfries (2021), Lentz and Mortensen (2022), Bilal et al. (2022), and
McCrary (2022) focus on firms employing multiple workers and on-the-job search. When
the revenue function is not constant returns to scale and involves on-the-job search, solving
the firm’s problem becomes generally challenging due to the necessity of tracking the wage
distribution within each firm. To address this challenge, Lentz and Mortensen (2022) and
Bilal et al. (2022) consider an economy in which the joint value of firms and their workers
is always maximized. We adopt their approach to analyze knowledge diffusion through
the movement of inventors between firms. Building on Bilal et al. (2022), Bilal et al. (2023)

7Mawdsley and Somaya (2016) provide a review of this literature. A related area of study is the
relationship between geography and knowledge diffusion. Early research by Jaffe et al. (1993) suggested a
higher probability of cited patents originating from the same location as the citing ones. Breschi and Lissoni
(2009) refined this approach by introducing inventor mobility as a control, revealing that the effect of spatial
proximity on knowledge diffusion is reduced by more than half. This finding suggests that the critical role
of geography in knowledge diffusion primarily stems from the infrequency of inventors relocating across
regions.
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present an endogenous growth model where, in an economy with on-the-job search, the
productivity distribution of incumbent firms determines the productivity of new entrants,
similar to Luttmer (2007). However, their model does not account for knowledge diffusion
through the mobility of workers or inventors.

The rest of the paper proceeds as follows. Section 2 introduces the data and presents
empirical findings. Section 3 presents the theoretical framework, starting with the
competitive equilibrium, followed by the social planner’s problem, and a discussion of
externalities and policy instruments. Section 4 estimates the model using the data and
discusses its fit. Section 5 uses the estimated model to examine the impact of the decline
in inventor mobility and to evaluate the quantitative policy counterfactuals. Section 6
concludes.

2 Data and Empirical Findings

In this section, we investigate job flows of inventors between establishments using inventor
biography data for Germany. Our analyses draw on two administrative data sets, “Linked
Inventor Biography Data 1980–2014” (INV-BIO) and “Sample of Integrated Labor Market
Biographies” (Stichprobe der Integrierten Arbeitsmarktbiografien – SIAB).8

The INV-BIO data set combines labor market biographies recorded in the German
social security data (Integrated Employment Biographies — IEB) with patent register data
from the European Patent Office (EPO). This data set tracks information about 152,350
inventors who registered their patents with the EPO from 1980 to 2014. The information
includes their unique ID, age, gender, level of education, daily wage, and the number of
citations received by the patents associated with each inventor in the EPO’s records. The
data also contain information about the establishments employing the inventors, such as
the establishment ID, the total number of their employees, and the mean daily wage of
their full-time employees. An important advantage over patent-based data sets used in
previous studies (e.g., EPO patent data by Akcigit et al. (2018)) is that we can use social
security information to track inventors’ flows even when they are not creating patents.

The SIAB data set is a 2% random sample from IEB. It contains the same information
about individuals and their employing establishments as INV-BIO, except for patent-related
information. In the absence of patent data, we identify inventors in SIAB using a 3-digit
occupation code, as described in Section 2.2. The sample covers 3,322,316 individuals from
1980 to 2019.

8More detailed information is presented in Appendix A.
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Because the two data sets cannot be merged, we use them separately for each analysis.
When comparing the movement patterns of inventors and other workers in Section 2.2,
we rely on SIAB, which includes both inventors and non-inventors. Otherwise, we use
INV-BIO, a data set focused exclusively on inventor information.

2.1 Inventor Flows in INV-BIO

First, we adopt an approach similar to Haltiwanger et al. (2018) to characterize inventor
flows using INV-BIO. We assign each establishment to a percentile rank based on either
patent information or a productivity measure. We then compute the transition probabilities
of inventor flows between these ranks.9

We use three measures as proxies for knowledge quality or productivity: (i) patent
citation per inventor, (ii) the number of employees (establishment size), and (iii) the mean
wage of full-time employees.10 The first measure is based on the forward citations for
patents that establishments have created. Measuring patent quality through forward
citations is widely employed in the literature on patent creation (e.g., Pakes (1986); Hall
et al. (2001); Akcigit et al. (2018)). Our measure for an establishment 𝑒 in year 𝑡, 𝑧𝑒𝑡 , is
given by:

𝑧𝑒𝑡 =
∑
𝑖

citations𝑖𝑡 ×
𝑛𝑖𝑒

𝑛𝑖

where citations𝑖𝑡 denotes the count of forward citations that occur three years after year 𝑡
for patent 𝑖, which was created by a team including inventors employed at establishment
𝑒. Note that the team developing the patent can consist of inventors from different
establishments. 𝑛𝑖𝑒 represents the number of inventors at establishment 𝑒 in the team,
while 𝑛𝑖 represents the total number of inventors in the team, including those affiliated
with different establishments. We multiply citations𝑖𝑡 by 𝑛𝑖𝑒/𝑛𝑖 to capture the contribution
of inventors affiliated with establishment 𝑒.

Table 1 shows the transition probabilities of inventor flows from origin to destination
percentile ranks.11 The red-shaded cells highlight substantial movements from higher to

9Establishments can fall into different percentiles each year depending on the measure used. The ranks of
the origin and destination establishments are determined by the measure from the previous year, preceding
the movement of inventors.

10On-the-job search models with heterogeneous-productivity firms (e.g., Postel-Vinay and Robin (2002))
predict that more productive firms offer higher wages and attract more workers.

11Appendix A.2 reports the distribution of inventors for each measure. It reveals a notable concentration
of inventors within specific establishments. Regardless of the measure, more than half of inventors are
employed in establishments above the 80th percentile, and only about 10% are in establishments below
the 50th percentile. This aligns with the finding by Akcigit and Goldschlag (2023b) that inventors are
concentrated in large incumbents in the U.S.
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Table 1: Transition Probabilities of Inventor Flows

(a) Rank by Citation/Inventor

Origin rank ≤ 50% 50–60 60–70 70–80 80–100
≤ 50% 2.3 0.2 0.3 0.4 4.3
50–60 1.7 0.2 0.2 0.3 3.0
60–70 1.9 0.2 0.3 0.3 3.6
70–80 2.2 0.2 0.2 0.4 4.2
80–100 19.5 2.0 2.4 3.4 46.7

(b) Rank by Establishment Size

Origin rank ≤ 50% 50–60 60–70 70–80 80–100
≤ 50% 2.6 0.9 0.7 0.8 6.3
50–60 0.4 0.5 0.6 0.4 2.3
60–70 0.5 0.2 0.7 0.9 3.0
70–80 0.6 0.3 0.4 1.3 4.8
80–100 5.8 2.5 3.4 4.7 55.7

(c) Rank by Mean Wage

Origin rank ≤ 50% 50–60 60–70 70–80 80–100
≤ 50% 2.9 1.1 1.0 1.1 3.5
50–60 0.8 0.9 1.1 0.9 2.3
60–70 1.0 0.9 2.0 2.1 4.1
70–80 1.4 1.0 1.7 3.6 7.3
80–100 5.5 3.6 5.4 7.2 37.6

Notes: Each panel reports the share of inventor job-to-job moves across destination establishment percentiles.
Inventors who remain with the same establishment are excluded. Percentiles in panel (A) are based on
the three-year backward average of forward patent citations per inventor; panel (B) uses establishment
employment; panel (C) uses the mean wage of full-time employees. Ranks are determined using the previous
year’s measure. The sample covers 1980–2014.

lower ranks: the sums of these entries equal 33.7% in panel (A), 18.8% in panel (B), and
28.5% in panel (C). These shares indicate that many inventors move from higher-ranked
establishments to lower-ranked ones.12 Appendix A.2 shows that this pattern persists even
when we restrict the sample to job flows accompanied by wage increases.

This pattern does not appear in earlier work on worker flows. For example, Haltiwanger
et al. (2018) construct transition probabilities based on firms’ mean wages and find a higher
probability of flows toward higher ranks. The contrast suggests that the prevalence of

12Another notable pattern is the large mass along the diagonals, especially in the bottom-right corner of
each panel: 49.9% in panel (A), 60.8% in panel (B), and 50.8% in panel (C). This indicates that many inventors
move within the same rank, particularly within the top rank, a pattern also documented in the worker-flow
literature (e.g., Haltiwanger et al. (2018)).
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Table 2: Identified Inventors in SIAB and Inventors in INV-BIO

Summary statistics SIAB INV-BIO
(1980 - 2014) Workers Identified inventors Inventors
Daily wage, Euro Mean 59.0 78.9 156.2

S.D. 47.2 52.1 30.0
Age Mean 38.7 38.4 42.4

S.D. 12.9 12.4 9.0
Females, % 45.2 14.8 5.7
𝑁 of obs., thousand 21,344 2,871 420

Notes: This table compares the summary statistics between workers in SIAB and the inventors in INV-BIO.
Identified inventors in SIAB are workers who work in the following four occupations: “research and
development”, “machine-building and operations”, “mathematics, biology, and physics”, and “mechatronics,
energy, and electronics.” The workers in the table include the identified inventors. The summary statistics
are calculated using a pooled sample with daily wage, age, and gender filled in.

flows to lower-ranked establishments is a distinctive feature of inventor mobility.

2.2 Inventor Flows in Comparison with Worker Flows

In this section, we compare inventor flows with worker flows. We use SIAB for this
comparison because INV-BIO lacks information on non-inventor workers.

To identify inventors within SIAB, we use a 3-digit occupation code. We find that
the majority of inventors in INV-BIO are affiliated with four occupations: research and
development (20.2%), machine-building and operations (19.8%), mathematics, biology,
and physics (19.1%), and mechatronics, energy, and electronics (18.8%). These occupations
account for nearly 80% of the inventors in INV-BIO, so we treat SIAB workers in these
categories as likely inventors.

Table 2 compares summary statistics across the two data sets. The mean daily wage of
the identified inventors in SIAB lies between the average wage of all SIAB workers and that
of inventors in INV-BIO. The share of female workers exhibits a similar ordering. These
patterns suggest that our identified inventors include both actual inventors and some
non-inventor workers. Consequently, the subsequent comparison between workers and
identified inventors should be interpreted as conservative because attenuation bias likely
attenuates the differences.

We estimate the following Probit model for job changers without unemployment spells:

𝑃(𝐷𝑖𝑡 = 1) = Φ(𝛽0 + 𝛽1𝐼𝑖𝑡 + 𝛽2𝑋𝑖𝑡) (1)

The indicator 𝐼𝑖𝑡 equals one if individual 𝑖 works in one of the four occupations in year

9



Table 3: Estimation Result for Inventor Flows

(1) 𝑃(𝐷𝑖𝑡 = 1) (2) Δ log𝑤𝑖𝑡

Whole sample Sample with wage ↑
𝐼𝑖𝑡 .077*** .036*** .052*** .012*** .017*** .021***

(.004) (.004) (.004) (.004) (.005) (.004)

𝐷𝑖𝑡 -.078*** -.084***
(.006) (.005)

𝐷𝑖𝑡 × 𝐼𝑖𝑡 .016*** -.002
(.006) (.006)

Control
√ √ √ √ √ √

Fixed Effects
√ √

Measure for 𝐷𝑖𝑡 Size Mean wage Size Mean wage Size Mean wage
𝑁 3,572,567 3,533,344 2,082,939 2,060,714 859,888 859,861
Adj. 𝑅2 .019 .016 .005 .003 .13 .13

Notes: Control variables include age, age squared, gender, and educational attainment. Fixed effects include
year, year × industry, and destination-establishment fixed effects. 𝐼𝑖𝑡 equals one if individual 𝑖 works in one
of the four occupations (“research and development”, “machine-building and operations”, “mathematics,
biology, and physics”, and “mechatronics, energy, and electronics”) in year 𝑡, and zero otherwise. 𝐷𝑖𝑡 equals
one if individual 𝑖 moves to a less productive establishment in year 𝑡, and zero otherwise. The productivity
measure is based on establishment size or mean wage in year 𝑡 − 1. The sample spans 1980–2019. Standard
errors are clustered by year and destination establishment. * 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01.

𝑡, and zero otherwise. 𝐷𝑖𝑡 equals one if individual 𝑖 moves from a more productive
establishment to a less productive one in year 𝑡, and zero if the move is toward a more
productive establishment. We focus on moves between establishments rather than ranks.
To construct 𝐷𝑖𝑡 , we use the number of employees or the mean wage as the productivity
proxy. The control vector 𝑋𝑖𝑡 includes age, age squared, gender, and educational attainment.
To avoid the incidental parameter problem, we estimate the model without fixed effects.13

The function Φ denotes the cumulative distribution function of the standard normal
distribution.

Our coefficient of interest is 𝛽1. A positive value indicates that inventors are more
likely than other workers to move to less productive establishments. Standard errors are
clustered by destination establishment and year to accommodate persistent establishment-
or year-specific shocks.

Table 3 reports the estimation results. Columns (1) and (2) use establishment size and
mean wage, respectively, to construct 𝐷𝑖𝑡 . In both specifications, inventors are significantly
more likely than other workers to move to less productive establishments. Columns (3)

13A linear probability model with fixed effects delivers a significantly positive estimate of 𝛽1 as reported in
Table 3; see Appendix A.2.

10



and (4) restrict the sample to job changers who receive wage increases, and the estimated
coefficients on 𝐼𝑖𝑡 remain positive and significant. Hence, many inventors move to less
productive establishments even when their wages rise after the move.

To further examine the association between the direction of flows and wages, we run
the following regression:

log𝑤𝑖𝑡 − log𝑤𝑖𝑡−1 = 𝛽0 + 𝛽1𝐷𝑖𝑡 + 𝛽2𝐼𝑖𝑡 + 𝛽3𝐷𝑖𝑡 𝐼𝑖𝑡 + 𝛽4𝑋𝑖𝑡 + 𝛼 + 𝜀𝑖𝑡 . (2)

The variable 𝑤𝑖𝑡 represents the daily wage of individual 𝑖 after a job change, while 𝑤𝑖𝑡−1

represents the wage before the job change. The vector of fixed effects 𝛼 includes year, year
× industry, and destination establishment fixed effects. The definition of other variables
remains the same as in the equation (1).

Columns (5) and (6) examine wage growth directly. Inventors experience wage gains
of roughly 2% more than comparable workers when they change jobs. The coefficients
on 𝐷𝑖𝑡 are negative, showing that moves to less productive establishments are generally
associated with smaller wage increases. However, in column (5) the interaction 𝐷𝑖𝑡 × 𝐼𝑖𝑡

is significantly positive, indicating that inventors experience less of a wage penalty than
other workers when moving to less productive establishments.

Inventor mobility can plausibly generate these patterns through knowledge transfer.
Inventors who leave high-productivity establishments bring ideas that can raise productivity
elsewhere, making lower-ranked establishments willing to poach them and compensate
them accordingly.

3 Model

In this section, we first introduce an endogenous growth model that highlights the role of
inventor mobility and the resulting knowledge diffusion and characterize the competitive
equilibrium. Next, we formulate the optimal allocation and examine the externalities
present in this economy. The competitive equilibrium and optimal allocation introduced in
this section will be numerically analyzed in Section 5.

Household and Production Technology

Time is continuous. The representative household is composed of a unit measure of
individuals who supply inelastically 𝐿 units of production labor and 𝑁 units of inventors.
The representative household consumes a single final good, and the utility at time 0 is

11



given by ∫ ∞

0
𝑒−𝜌𝑡 log𝐶(𝑡)𝑑𝑡.

where 𝜌 > 0 is the discount rate. Each household is free to borrow or lend at interest
rate 𝑟 (𝑡) and 𝐶(𝑡) is the aggregate consumption at time 𝑡. We choose the numeraire so
that 𝑃(𝑡)𝑌(𝑡) = 1 for all 𝑡, where 𝑃(𝑡) denotes the final good price and 𝑌(𝑡) denotes the
aggregate output.14 The choice of numeraire implies 𝑟 (𝑡) = 𝜌 for all 𝑡.15

There is a unit continuum of products to produce the final good, and the aggregate
output is determined by the production function

log𝑌 (𝑡) =
∫ 1

0
log (𝑧(𝜔, 𝑡)𝑙(𝜔, 𝑡)) 𝑑𝜔

where 𝑙(𝜔, 𝑡) is the quantity of product 𝜔 ∈ [0, 1] at time 𝑡, and 𝑧(𝜔, 𝑡) is the productivity
of product 𝜔 at time 𝑡.

Production labor is the only factor in the production of each product. There is no
friction in the production labor market. Labor productivity is the same for all products and
is set equal to 1. This means that 𝑙(𝜔, 𝑡) represents both the output amount of product 𝜔
and the labor demand for the production of product 𝜔. Each firm is the monopoly supplier
of products. We assume that firms pay a marginally small operating cost 𝜖 → 0 before
producing a product each period, like Acemoglu et al. (2018), to prevent price competition
between the technology leader of the product and firms that produce that product in the
past. Let 𝑝 (𝜔, 𝑡) denote the price of product 𝜔 at 𝑡. Because the nominal output 𝑃 (𝑡)𝑌 (𝑡)
is normalized to 1 and the final good technology is Cobb-Douglas, the revenue for each
product line 𝑝 (𝑡) 𝑙 (𝜔, 𝑡) is also equal to 1.16

We assume that if a firm pays a cost 0 < 𝜋 < 1, it can copy and utilize a technology of
other firms. As a result, 𝜋 is the upper bound of the profit that a firm can obtain from
a single product line17.18 A monopoly firm sets the price 𝑝 (𝜔, 𝑡) to solve the following

14The choice of the numeraire implies that 𝑃 (𝑡) declines over time at the rate of economic growth.
15The derivation is in Appendix B.1.
16The derivation is in Appendix B.2
17We consider the size of 𝜋 to be exogenously determined by factors such as the strength of patent

enforcement or taxation on sales.
18In a quality ladder model with a Cobb-Douglas aggregator, it is common to assume Bertrand competition

between the firm currently producing the product and the firm that previously produced it. In this case,
when the step size of innovation is constant, the instantaneous profit for each product line is equal across all
product lines, as in the result derived here.
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problem:

max
𝑝(𝜔,𝑡)

𝜋 (𝜔, 𝑡) = 𝑝 (𝜔, 𝑡) 𝑙 (𝜔, 𝑡) − 𝑤 (𝑡) 𝑙 (𝜔, 𝑡) s.t. 𝜋 (𝜔, 𝑡) ≤ 𝜋, 𝑝 (𝜔, 𝑡) 𝑙 (𝜔, 𝑡) = 1

Then, the price chosen by the firm is 𝑝 (𝜔, 𝑡) = 𝑤 (𝑡) /(1 − 𝜋) and the labor demand is
𝑙 (𝜔, 𝑡) = (1 − 𝜋) /𝑤 (𝑡). From the labor demand and labor market clearing condition∫ 1
0 𝑙(𝜔, 𝑡)𝑑𝜔 = 𝐿, the production wage is given by 𝑤 (𝑡) = (1 − 𝜋) /𝐿. Therefore, we have
𝑝 (𝜔, 𝑡) = 1/𝐿 and 𝑙 (𝜔, 𝑡) = 𝐿.

Innovation Technology

The quality of each product is determined by the total number of innovations that have
been implemented for that product in the past:

𝑧(𝜔, 𝑡) = 𝜆𝑚(𝜔,𝑡)

where 𝑚(𝜔, 𝑡) is the number of innovations made to product 𝜔 up to time 𝑡, and 𝜆 > 1 is
the step size of innovation, assumed to be the same across all products. All products face
the same rate of creative destruction, denoted by 𝛿 (𝑡), which is endogenously determined
by the aggregation of innovation activities. By the law of large numbers, we have:

log𝑌 (𝑡) = log𝜆

∫ 𝑡

0
𝛿 (𝜏) 𝑑𝜏 + log 𝐿 (3)

Therefore, the economic growth rate is proportional to the creative destruction rate:

𝑑

𝑑𝑡
log𝑌 (𝑡) = 𝛿 (𝑡) log𝜆 (4)

Each firm supplies a continuum of products, denoted by 𝑘, and employs a continuum
of inventors, denoted by 𝑛. The mass of a firm’s product lines 𝑘 changes for three reasons:

(i) Internal R&D: The mass of a firm’s product lines 𝑘 changes as a result of internal
R&D activities:

𝑑 log 𝑘
��
𝑅&𝐷

=

{
𝜇 (𝑛/𝑘) − 𝜎2

2

}
𝑑𝑡 + 𝜎𝑑𝑊 (𝑡)

where 𝑑𝑊 (𝑡) is a Wiener process, and 𝜇(·) is increasing, concave, and 𝜇(0) ≥ 0, and
𝜎 > 0. Under the assumption on 𝜇(·), the drift of R&D outcome per inventor 𝜇 (𝑛/𝑘) 𝑘/𝑛
is increasing in 𝑘/𝑛. From this observation, we refer to the ratio of knowledge capital to
inventor measure 𝑘/𝑛 as inventor productivity. The stochastic process of 𝑘 due to internal
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R&D assumed here is reminiscent of the assumption in Klette and Kortum (2004) as the
expected R&D outcome 𝜇 (𝑛/𝑘) 𝑘 exhibits constant returns to scale in the knowledge capital
𝑘 and the mass of inventors 𝑛. Klette and Kortum (2004) assume that a firm’s knowledge
capital facilitates innovation, and that knowledge capital can be summarized by the number
of a firm’s product lines. We also follow this assumption, and in the following, we refer to
𝑘 as either knowledge capital or the mass of product lines, interchangeably. The difference
between ours and Klette and Kortum (2004) is that in our model, 𝑘 takes a continuous
value, whereas in their model, 𝑘 takes an integer value. Furthermore, as we will discuss
later, unlike the model of Klette and Kortum (2004), there is a cost to adjusting the mass of
inventors 𝑛 due to labor market frictions.

(ii) Knowledge diffusion due to inventor job flows: When the mass of inventors
at a (𝑘, 𝑛)-firm increases by 1% due to the inflow of inventors from a (𝑘′, 𝑛′)-firm, the
knowledge capital of the (𝑘, 𝑛)-firm increases by 𝛼̂(𝑘/𝑛, 𝑘′/𝑛′)%:

𝑑 log 𝑘
��
from (𝑘′,𝑛′)-firm = 𝛼̂(𝑘/𝑛, 𝑘′/𝑛′) 𝑑 log 𝑛

��
from (𝑘′,𝑛′)-firm

where 𝛼̂(𝑘/𝑛, 𝑘′/𝑛′) is an exogenous function of the inventor productivity of both the
poaching firm and the poached firm. We assume that 𝜕 (𝛼̂(𝑘/𝑛, 𝑘′/𝑛′)) /𝜕 (𝑘/𝑛) < 0 and
𝜕 (𝛼̂(𝑘/𝑛, 𝑘′/𝑛′)) /𝜕 (𝑘′/𝑛′) > 0. In other words, (i) the more productive the inventors at a
poached firm are, or (ii) the less productive the inventors at a poaching firm are, the more
knowledge capital the poaching firm will gain when hiring these inventors.

(iii) Creative destruction by other firms: Each product line of a firm faces the possibility
that other firms will innovate on it. If a firm has 𝑘 product lines, it will lose product lines
at a rate of 𝛿 (𝑡) 𝑘:

𝑑 log 𝑘
��
Destruction = −𝛿 (𝑡) 𝑑𝑡

Matching Technology and Bargaining

Firms and inventors meet in a single frictional labor market, and search is random. We
focus on on-the-job search and assume that unemployment benefits are so low that there is
no voluntary unemployment. As in Kaas and Kircher (2015), we assume a constant returns
to scale vacancy cost with respect to vacancy and firm size: A firm pays a cost 𝑐 (𝑣̂/𝑘) 𝑘
to post 𝑣̂ vacancies. The vacancy cost is in terms of final good. The cost function 𝑐 (·) is
increasing and concave, and satisfies 𝑐(0) = 0 and 𝑐′(0) = 0.19

19We consider vacancy costs not just as the cost of recruiting but more broadly as labor adjustment costs.
The management literature on labor turnover often emphasizes the significant transaction costs associated
with labor mobility. Not only is hiring new employees costly, but training them is as well. Moreover, the
relationships and informal communication structures within the firm are disrupted.
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An aggregate matching function 𝑚(𝑁,𝑉) determines the flow of meetings between
firms and inventors as a function of the measure of inventors, 𝑁 , and the total measure of
vacancies posted by firms 𝑉 . Each firm meets an inventor at a Poisson rate proportional to
the number of vacancies it posts. Each inventor meets a firm at a Poisson rate identical across
all inventors. We assume that 𝑚 exhibits constant returns to scale in (𝑁,𝑉) and decreasing
returns to scale in either 𝑁 or 𝑉 separately. Let 𝜃 = 𝑉/𝑁 denote labor market tightness.
Then, the Poisson rate at which a unit of vacancy meets an inventor is 𝑞(𝜃) ≡ 𝑚(𝑁,𝑉)/𝑉 ,
and the rate at which an inventor meets a firm is 𝜃𝑞(𝜃) = 𝑚(𝑁,𝑉)/𝑁 .

Our assumptions on bargaining and vacancy posting follow Lentz and Mortensen
(2022). When a firm and an inventor meet, a match is formed if the match surplus among
the three parties (the poaching firm, targeted firm, and inventor) is positive. In this case,
the three parties bargain over the match surplus. As a result of bargaining, the share
𝛽 ∈ (0, 1) of the surplus is allocated to the coalition of the targeted firm and inventor,
and the residual is allocated to the poaching firm. We do not specify how the surplus is
allocated between the targeted firm and inventor. In addition, we assume that the firm
posts the privately efficient amount of vacancies, which is the one that maximizes the sum
of the values of the firm and its inventors.20

Under these assumptions, firms’ and inventors’ decisions are privately efficient, as if
the firm and incumbent inventors maximize their total value. Because the inventors are
the same ex-ante, the state variables of the total value function are only two: inventor
employment 𝑛 and knowledge capital 𝑘.

Distribution of Firms and Product Lines

To formally characterize the equilibrium, we need to introduce the distribution of firms
and product lines. Let 𝑔 (𝑘, 𝑛, 𝑡) denote the measure of firms in the (𝑘, 𝑛)-space. Then, the
measure of product in the (𝑘, 𝑛)-space is given by 𝑘𝑔 (𝑘, 𝑛, 𝑡). As we will confirm later,
the state variable of a firm is reduced to the number of inventors per product line, 𝑥 ≡ 𝑛

𝑘 .
Anticipating this, let 𝑓 (𝑥, 𝑡) denote the measure of product in the 𝑥-space, which is defined
as:

𝑓 (𝑥, 𝑡) =
∫ ∞

0

∫ ∞

0
𝑘𝑔 (𝑘, 𝑛, 𝑡) 𝜹

(
𝑛

𝑘
− 𝑥

)
𝑑𝑘𝑑𝑛

20Hawkins (2015) discusses how vacancy posting becomes privately optimal under the assumption that
firms can commit to wage contracts. Also, under the assumption that firms cannot commit to wage contracts,
Bilal et al. (2022) provide an argument where jointly efficient vacancy posting is a result of a particular
communication protocol between the firm and its workers.
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where 𝜹 (𝑥) is the Dirac delta function. Since the total mass of the product is one, we have:

1 =

∫ ∞

0
𝑓 (𝑥, 𝑡)𝑑𝑥. (5)

Also, since all inventors are employed, we have:

𝑁 =

∫ ∞

0
𝑥 𝑓 (𝑥, 𝑡)𝑑𝑥 (6)

Let 𝑣 denote the amount of vacancy per product line, where 𝑣 = 𝑣̂/𝑘. The total amount of
vacancies is given by:

𝑉 (𝑡) =
∫ ∞

0
𝑣 (𝑥, 𝑡) 𝑓 (𝑥, 𝑡) 𝑑𝑥 (7)

To characterize the equilibrium under random search, it is useful to define the dis-
tributions weighted by the mass of inventors and the mass of vacancies. Let 𝑔𝑛 (𝑘, 𝑛, 𝑡)
denote the inventor-weighted firm distribution in the (𝑘, 𝑛)-space, and 𝑔𝑣̃ (𝑘, 𝑛, 𝑡) denote
the vacancy-weighted firm distribution in the (𝑘, 𝑛)-space:

𝑔𝑛 (𝑘, 𝑛, 𝑡) =
𝑛𝑔(𝑘, 𝑛, 𝑡)

𝑁

𝑔𝑣̃ (𝑘, 𝑛, 𝑡) =
𝑣̃ (𝑘, 𝑛, 𝑡) 𝑔(𝑘, 𝑛, 𝑡)

𝑉 (𝑡)

Analogously, let 𝑓𝑥 (𝑥, 𝑡) denote the inventor-weighted product density in the 𝑥-space, and
𝑓𝑣 (𝑥, 𝑡) denote vacancy-weighted product density in the 𝑥-space:

𝑓𝑥 (𝑥, 𝑡) =
𝑥 𝑓 (𝑥, 𝑡)

𝑁

𝑓𝑣 (𝑥, 𝑡) =
𝑣 (𝑥, 𝑡) 𝑓 (𝑥, 𝑡)

𝑉 (𝑡)

In addition, we express the cumulative distribution function (c.d.f.) in uppercase letters.
For example, the c.d.f. of the inventor-weighted firm in the (𝑘, 𝑛)-space is denoted by
𝐺𝑛 (𝑘, 𝑛, 𝑡).

HJB Equation

The decision regarding the amount of vacancies posted and whether inventors actually
move after being matched can be characterized by the HJB equation. Let Ω(𝑘, 𝑛, 𝑡) denote
the joint value of a firm with product mass 𝑘 and its 𝑛 inventors at time 𝑡, which satisfies
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the HJB equation:

𝜌Ω(𝑘, 𝑛, 𝑡) − 𝜕

𝜕𝑡
Ω(𝑘, 𝑛, 𝑡) =max

𝑣̂≥0

{
𝜋𝑘 − 𝑐 (𝑣̂/𝑘) 𝑘

+
[
𝜇 (𝑛/𝑘) − 𝛿 (𝑡)

]
𝑘Ω𝑘(𝑘, 𝑛, 𝑡) +

𝜎2

2 𝑘2Ω𝑘𝑘(𝑘, 𝑛, 𝑡)

+
(
1 − 𝛽

)
𝑞(𝜃 (𝑡))𝑣̂

∫
𝑀̂ (𝑘/𝑛, 𝑘′/𝑛′, 𝑡) 𝑑𝐺𝑛(𝑘′, 𝑛′, 𝑡)

+ 𝛽𝜃 (𝑡) 𝑞 (𝜃 (𝑡)) 𝑛
∫

𝑀̂ (𝑘′/𝑛′, 𝑘/𝑛, 𝑡) 𝑑𝐺𝑣̃(𝑘′, 𝑛′, 𝑡)
}
.

where the match surplus 𝑀̂ (𝑘/𝑛, 𝑘′/𝑛′, 𝑡) is given by

𝑀̂ (𝑘/𝑛, 𝑘′/𝑛′, 𝑡) = max [Ω𝑛(𝑘, 𝑛, 𝑡) + 𝛼̂ (𝑘/𝑛, 𝑘′/𝑛′) 𝑘/𝑛Ω𝑘(𝑘, 𝑛, 𝑡) −Ω𝑛 (𝑘′, 𝑛′, 𝑡) , 0] .

The intuition behind the HJB equation is as follows. The first term on the right-hand
side, 𝜋𝑘, represents the current profit. The second term, 𝑐 (𝑣̂/𝑘) 𝑘, represents the search
cost. The third and fourth terms capture the change in the value due to the internal R&D
activities and the loss of product lines through creative destruction by other firms.

The fourth term represents the change in the value from poaching new inventors from
other firms. The firm posts 𝑣̂ vacancies, and each vacancy matches with an inventor at the
rate of 𝑞(𝜃). The inventors from other firms are matched according to the inventor-weighted
distribution 𝐺𝑛 . If a match occurs and the match surplus is positive, the inventor moves
to the poaching firm. In this case, the poaching firm obtains a

(
1 − 𝛽

)
share of the match

surplus.
The fifth term represents the change in the value when the firm’s own inventors are

poached by other firms. The firm has 𝑛 inventors, and each inventor matches with a
vacancy at the rate of 𝜃 (𝑡) 𝑞 (𝜃 (𝑡)). These inventors are matched with other firms according
to the vacancy-weighted distribution 𝐺𝑣̃ . The firm that loses the inventor receives a 𝛽 share
of the match surplus.

The matching surplus is defined as the gain of the firm that poaches an inventor minus
the loss incurred by the firm from which the inventor is poached. The gain for the poaching
firm consists of (i) the increase in value due to the rise in the mass of inventors and (ii) the
increase in value due to knowledge diffusion. The loss for the firm from which the inventor
was poached is (iii) the decrease in value due to the reduction in the mass of inventors.

From the HJB equation, we can confirm that the value function is homogeneous of
degree one in (𝑘, 𝑛). Therefore, the HJB equation can be rewritten in terms of the value per
product line, with the number of inventors per product line, 𝑥, as the single state variable.
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Let 𝑆(𝑥, 𝑡) denote the joint value of a product line and its 𝑥 inventors at time 𝑡:

𝑆 (𝑥, 𝑡) = 𝑆
(
𝑛

𝑘
, 𝑡
)
= Ω (𝑘, 𝑛, 𝑡) /𝑘

The firm-level marginal value of inventor and knowledge capital can be written using
𝑆(𝑥, 𝑡) as

Ω𝑛(𝑘, 𝑛, 𝑡) = 𝑆𝑥(𝑥, 𝑡),
Ω𝑘(𝑘, 𝑛, 𝑡) = 𝑆(𝑥, 𝑡) − 𝑥𝑆𝑥(𝑥, 𝑡),

and the second derivative of firm-level joint value with respect to knowledge capital is
expressed as

Ω𝑘𝑘(𝑘, 𝑛, 𝑡) =
1
𝑘
𝑥2𝑆𝑥𝑥(𝑥, 𝑡).

When a firm hires a marginal unit of inventor, the number of inventors per product line
increases by 1/𝑘 in all 𝑘 units of product lines. As a result, the firm-level marginal value
of inventors Ω𝑛(𝑘, 𝑛, 𝑡) equals 𝑘 × 1/𝑘 × 𝑆𝑥(𝑥, 𝑡). In addition, when a firm’s knowledge
capital increases by one unit, the firm’s product line increases by one unit, but the
number of inventors per product line decreases by 𝑛/𝑘. Therefore, the firm-level marginal
value of knowledge capital Ω𝑘(𝑘, 𝑛, 𝑡) equals the value of one product line 𝑆(𝑥, 𝑡) minus
𝑛/𝑘 × 𝑆𝑥(𝑥, 𝑡).

Then, we can rewrite the HJB equation at firm level into the HJB equation at the product
level:

𝜌𝑆(𝑥, 𝑡) − 𝜕

𝜕𝑡
𝑆(𝑥, 𝑡) =max

𝑣≥0

{
𝜋 − 𝑐 (𝑣) +

[
𝜇 (𝑥) − 𝛿 (𝑡)

]
[𝑆(𝑥, 𝑡) − 𝑥𝑆𝑥(𝑥, 𝑡)]

+ 𝜎2

2 𝑥2𝑆𝑥𝑥(𝑥, 𝑡) +
(
1 − 𝛽

)
𝑞
(
𝜃 (𝑡)

)
𝑣

∫
𝑀 (𝑥, 𝑥′, 𝑡) 𝑑𝐹𝑥(𝑥′, 𝑡) (8)

+ 𝛽𝜃 (𝑡) 𝑞
(
𝜃 (𝑡)

)
𝑥

∫
𝑀 (𝑥′, 𝑥, 𝑡) 𝑑𝐹𝑣(𝑥′, 𝑡)

}
,

where the match surplus 𝑀 (𝑥, 𝑥′, 𝑡) is given by

𝑀 (𝑥, 𝑥′, 𝑡) = max
[
𝑆𝑥(𝑥, 𝑡) + 𝛼 (𝑥, 𝑥′) 𝑥−1 {𝑆(𝑥, 𝑡) − 𝑥𝑆𝑥(𝑥, 𝑡)} − 𝑆𝑥(𝑥′, 𝑡), 0

]
. (9)

Here 𝛼(𝑥, 𝑥′) ≡ 𝛼̂(1/𝑥, 1/𝑥′) maps the firm-level knowledge diffusion function into the
inventor-per-product state variable.
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From (8), the first-order condition for the firm’s vacancy decision gives

𝑐′ (𝑣 (𝑥, 𝑡)) =
(
1 − 𝛽

)
𝑞(𝜃 (𝑡))

∫
𝑀 (𝑥, 𝑥′, 𝑡) 𝑑𝐹𝑥(𝑥′, 𝑡) (10)

Therefore, the vacancy policy is increasing in the share of matching surplus for
poaching firm

(
1 − 𝛽

)
, matching probability 𝑞 (𝜃 (𝑡)), and the expected match surplus∫

𝑀 (𝑥, 𝑥′, 𝑡) 𝑑𝐹𝑥(𝑥′, 𝑡).

KF Equation

To complete the description of the environment, we need to specify the evolution of
the inventor productivity distribution at the product line level, 𝑓 (𝑥, 𝑡). First, define the
poaching indicator function 1𝑃 that takes 1 if the poaching succeeds and takes 0 otherwise:

1𝑃(𝑥, 𝑥′, 𝑡) =


1 if 𝑀 (𝑥, 𝑥′, 𝑡) > 0

0 otherwise
(11)

Standard arguments give the KF equation, a partial differential equation governing the
evolution of the distribution:

𝜕

𝜕𝑡
𝑓 (𝑥, 𝑡) =

{
𝑞(𝜃(𝑡))𝑣(𝑥,𝑡)

𝑥

∫ ∞
0 1𝑃(𝑥, 𝑥′, 𝑡)𝛼 (𝑥, 𝑥′) 𝑓𝑥(𝑥′, 𝑡)𝑑𝑥′ + 𝜇 (𝑥) − 𝛿 (𝑡)

}
𝑓 (𝑥, 𝑡)

− 𝜕

𝜕𝑥

[{
𝑞(𝜃(𝑡))𝑣(𝑥,𝑡)

𝑥

∫ ∞
0 1𝑃(𝑥, 𝑥′, 𝑡) {1 − 𝛼 (𝑥, 𝑥′)} 𝑓𝑥(𝑥′, 𝑡)𝑑𝑥′

−𝜃 (𝑡) 𝑞(𝜃 (𝑡))
∫ ∞

0 1𝑃(𝑥′, 𝑥, 𝑡) 𝑓𝑣(𝑥′, 𝑡)𝑑𝑥′ − 𝜇 (𝑥) + 𝛿 (𝑡)

}
𝑥 𝑓 (𝑥, 𝑡)

]
(12)

+ 𝜕2

𝜕𝑥2

[
𝜎2

2 𝑥2 𝑓 (𝑥, 𝑡)
]

The first term captures changes in the mass of the product lines with 𝑥 mass of inventor
per product line. The second term captures changes in the mass of inventors within
product lines with 𝑥 mass of inventor per product line. The third term captures the effect
of idiosyncratic shocks on the distribution.

Creative Destruction Rate

The rate of creative destruction for each product is given by
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𝛿 (𝑡) =
∫

𝜇 (𝑥) 𝑑𝐹(𝑥, 𝑡)︸              ︷︷              ︸
Internal R&D

+𝑁𝜃 (𝑡) 𝑞 (𝜃 (𝑡))
∫ ∫

1𝑃(𝑥, 𝑥′, 𝑡)𝛼 (𝑥, 𝑥′) 𝑥−1𝑑𝐹𝑥(𝑥′, 𝑡)𝑑𝐹𝑣(𝑥, 𝑡)︸                                                                              ︷︷                                                                              ︸
Knowledge Diffusion

.

(13)
The first term represents the sum of internal R&D outcomes across all firms. The second
term represents the total net diffusion of knowledge through all inventor job flows.
Therefore, because the economic growth rate is proportional to the creative destruction
rate, the contribution to economic growth can be decomposed into that driven by internal
R&D and by knowledge diffusion.

Resource Constraint

The final good output is either consumed by the representative household or used to create
vacancies. The total expenditure on vacancy posting is given by

∫ ∞
0 𝑐 (𝑣 (𝑥, 𝑡)) 𝑑𝐹(𝑥, 𝑡),

and since the nominal output 𝑃 (𝑡)𝑌 (𝑡) is normalized to 1, the amount of the final good
used for creating vacancies is 𝑌(𝑡)

∫ ∞
0 𝑐 (𝑣 (𝑥, 𝑡)) 𝑑𝐹(𝑥, 𝑡). Therefore, the following resource

constraint must be satisfied:

𝐶(𝑡) + 𝑌(𝑡)
∫ ∞

0
𝑐 (𝑣 (𝑥, 𝑡)) 𝑑𝐹(𝑥, 𝑡) = 𝑌(𝑡) (14)

Definition of Equilibrium

We now define the equilibrium.

Definition 1. A competitive equilibrium consists of a sequence of joint value, vacancy policy,
poaching indicator function, inventor productivity distribution, creative destruction rate,
and labor market tightness[{

𝑆(𝑥, 𝑡), 𝑣(𝑥, 𝑡), {1𝑃(𝑥, 𝑥′, 𝑡)}𝑥′∈(0,∞) , 𝑓 (𝑥, 𝑡)
}
𝑥∈(0,∞) , 𝛿 (𝑡) , 𝜃 (𝑡)

]
𝑡∈[0,∞)

such that, given the initial inventor productivity distribution 𝑓 (𝑥, 0) that satisfies 1 =∫ ∞
0 𝑓 (𝑥, 0)𝑑𝑥 and 𝑁 =

∫ ∞
0 𝑥 𝑓 (𝑥, 0)𝑑𝑥,

1. the joint value 𝑆(𝑥, 𝑡) satisfies the HJB equation (8),

2. the vacancy posting is optimal, so that 𝑣(𝑥, 𝑡) satisfies (10),
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3. Given a match, the inventor moves if the match surplus is positive, so that the
poaching indicator function 1𝑃(𝑥, 𝑥′, 𝑡) is given by (11),

4. the inventor productivity distribution 𝑓 (𝑥, 𝑡) follows the KF equation (12),

5. the creative destruction rate 𝛿(𝑡) satisfies (13), and

6. the labor market tightness 𝜃 (𝑡) satisfies (7).

The steady-state equilibrium is the one where all variables are constant over time.

Decomposition of Firm-level Growth

In this model, we can decompose the factors contributing to the growth of firms’ knowledge
capital, the growth of the mass of employed inventors, and the growth of inventors’
productivity within firms. The growth rate of knowledge capital in a firm with 𝑥 inventors
per product line is expressed as follows:

𝑑 log 𝑘 (𝑥, 𝑡) =
(
𝜇 (𝑥) − 𝛿 (𝑡) − 𝜎2

2

)
𝑑𝑡 + 𝜎𝑑𝑊 (𝑡)︸                                     ︷︷                                     ︸

Internal R&D−Creative Destruction

+ 𝑞(𝜃 (𝑡))𝑣 (𝑥, 𝑡)
𝑥

∫ ∞

0
1𝑃(𝑥, 𝑥′, 𝑡)𝛼 (𝑥, 𝑥′) 𝑓𝑥(𝑥′, 𝑡)𝑑𝑥′𝑑𝑡︸                                                                ︷︷                                                                ︸

Knowledge Gain from Poaching

(15)

The first line on the right-hand side captures how firms’ knowledge capital grows through
internal R&D and decreases due to creative destruction by other firms. The second line
reflects the increase in knowledge capital through knowledge diffusion driven by inventor
inflows.

The growth rate of inventor employment of a firm with 𝑥 inventors per product line is
given by

𝑑 log 𝑛 (𝑥, 𝑡) =
𝑞(𝜃 (𝑡))𝑣 (𝑥, 𝑡)

𝑥

∫
1𝑃(𝑥, 𝑥′, 𝑡)𝑑𝐹𝑥(𝑥′, 𝑡)𝑑𝑡︸                                                ︷︷                                                ︸

inventor inflow rate

(16)

− 𝜃 (𝑡) 𝑞(𝜃 (𝑡))
∫ ∞

0
1𝑃(𝑥′, 𝑥, 𝑡) 𝑓𝑣(𝑥′, 𝑡)𝑑𝑥′𝑑𝑡,︸                                                  ︷︷                                                  ︸

inventor outflow rate
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which is expressed as the difference between the inventor inflow rate and the inventor
outflow rate.

The growth rate of inventor productivity is given by 𝑑 log 𝑥−1 = 𝑑 log 𝑘 − 𝑑 log 𝑛, and
we use this relationship in Section 4 to estimate the parameter values.

Advantage of Assuming Continuum Mass of Product lines

In our model, the number of product lines is treated as a continuous variable and follows a
geometric Brownian motion. In contrast, the model proposed by Klette and Kortum (2004)
and those based on it assume that the number of product lines a firm owns is an integer.
In this section, we argue that the feature of our model significantly simplifies the problem.

Our model satisfies not only the weak version of Gibrat’s law but also the strong version,
which is crucial for simplifying the problem. In our model, firm size, whether measured
by production worker employment or sales, is proportional to the number of product
lines 𝑘. As shown in (15), the growth rate of 𝑘 is independent of 𝑘 when conditioned on
inventor productivity. Therefore, in our model, not only is the mean growth rate of a firm
independent of firm size (a weak version of Gibrat’s law), but the entire distribution of
growth rates is also independent of firm size (a strong version of Gibrat’s law).

In contrast, the models proposed by Klette and Kortum (2004) and those based on it,
such as Atkeson and Burstein (2019), do not satisfy the strong version of Gibrat’s law. In
these models, the number of product lines takes an integer value, and a firm acquires
and loses product lines at Poisson arrival rates proportional to its size. In the absence of
other types of shocks, the mean growth rate of a firm remains independent of firm size,
satisfying a weak version of Gibrat’s law. However, averaging within the firm implies that
the variance of firm growth is inversely proportional to firm size. Consequently, the entire
distribution of growth rates depends on firm size, violating the strong version of Gibrat’s
law.21

A strong version of Gibrat’s law simplifies the model when R&D resources exhibit
stickiness. In existing models of firm dynamics and innovation, firms are typically able to
adjust their R&D resources freely, making R&D resources unnecessary as state variables.
However, when firms face constraints in adjusting these resources, at least two state
variables—firm size and R&D resources—are required. Despite this constraint, if the
strong version of Gibrat’s law holds, the ratio of firm size to R&D resources (𝑥 in our model)

21Stanley et al. (1996) document that if each firm consists of a number of equal sized units and these units
growth rates are independent, then the negative correlation between firm size and the standard deviation of
the growth rate becomes too large compared to the data. They argue that the small correlation indicates the
presence of strong, positive correlations among the firm’s units.
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becomes a sufficient state variable to describe the firm’s dynamics.
In addition, our formulation has the advantage of abstracting from the extensive margin

of firms and inventors. If product lines are modeled as continuous variables following a
geometric Brownian motion, it is possible to construct an equilibrium where no firms enter
or exit the market. This implies that we do not need to consider inventor unemployment
caused by firm exits. However, if the number of a firm’s product lines is an integer
and the firm stochastically loses product lines, all firms will eventually lose their entire
product lines and exit the market. Consequently, considering the entry and exit of firms
becomes inevitable. In our research, we deliberately ignore firm entry and exit, inventor
unemployment, and off-the-job search, and instead focus on job-to-job transitions among
inventors and the resulting knowledge diffusion.

Social Optimum

In this section, we define the social planner’s allocation and discuss the externalities present
in this economy. The social planner chooses the path[

𝑌(𝑡), 𝛿(𝑡), 𝜃(𝑡),
{
𝑣(𝑥, 𝑡), 𝑓 (𝑥, 𝑡), {1𝑃(𝑥, 𝑥′, 𝑡)}𝑥′∈(0,∞)

}
𝑥∈(0,∞)

]
𝑡∈[0,∞)

to maximize ∫ ∞

0
𝑒−𝜌𝑡

[
log𝑌(𝑡) + log

{
1 −

∫ ∞

0
𝑐 (𝑣 (𝑥, 𝑡)) 𝑑𝐹(𝑥, 𝑡)

}]
𝑑𝑡 (17)

subject to (4) , (13), (7), and (12), given the initial output 𝑌 (0) and initial density 𝑓 (𝑥, 0).
We now define the social planner’s allocation, which is structured to be comparable

with the competitive equilibrium (Definition 1). The derivation is in Appendix B.3.

Definition 2. A social optimum consists of a sequence of joint value, vacancy policy,
poaching indicator function, inventor productivity distribution, creative destruction rate,
labor market tightness, and instantaneous social gain from a product line[{

𝑆(𝑥, 𝑡), 𝑣(𝑥, 𝑡), {1𝑃(𝑥, 𝑥′, 𝑡)}𝑥′∈(0,∞) , 𝑓 (𝑥, 𝑡)
}
𝑥∈(0,∞) , 𝛿 (𝑡) , 𝜃 (𝑡) ,𝜋 (𝑡)

]
𝑡∈[0,∞)

such that, given the initial inventor productivity distribution 𝑓 (𝑥, 0) that satisfies 1 =∫ ∞
0 𝑓 (𝑥, 0)𝑑𝑥 and 𝑁 =

∫ ∞
0 𝑥 𝑓 (𝑥, 0)𝑑𝑥,
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1. the joint value 𝑆(𝑥, 𝑡) satisfies the HJB equation

𝜌𝑆(𝑥, 𝑡) − 𝜕

𝜕𝑡
𝑆(𝑥, 𝑡) =max

𝑣≥0

{
𝜋 (𝑡) − 𝑐 (𝑣) +

[
𝜇 (𝑥) − 𝛿 (𝑡)

]
[𝑆 (𝑥, 𝑡) − 𝑥𝑆𝑥 (𝑥, 𝑡)]

+ 𝜎2

2 𝑥2𝑆𝑥𝑥 (𝑥, 𝑡) + 𝑞 (𝜃 (𝑡)) 𝑣
∫

𝑀 (𝑥, 𝑥′, 𝑡) 𝑑𝐹𝑥(𝑥′, 𝑡)

+ 𝜃 (𝑡) 𝑞 (𝜃 (𝑡)) 𝑥
∫

𝑀 (𝑥′, 𝑥, 𝑡) 𝑑𝐹𝑣(𝑥′, 𝑡)

+ 𝑣𝜃 (𝑡) 𝑞′ (𝜃 (𝑡))
∫ ∫

𝑀(𝑥′′, 𝑥′, 𝑡)𝑑𝐹𝑥(𝑥′, 𝑡)𝑑𝐹𝑣(𝑥′′, 𝑡)
}
.

(18)

2. the vacancy posting policy 𝑣(𝑥, 𝑡) satisfies

𝑐′ (𝑣 (𝑥, 𝑡)) = 𝑞 (𝜃 (𝑡))
∫

𝑀 (𝑥, 𝑥′, 𝑡) 𝑑𝐹𝑥(𝑥′, 𝑡)

+ 𝜃 (𝑡) 𝑞′ (𝜃 (𝑡))
∫ ∫

𝑀(𝑥′′, 𝑥′, 𝑡)𝑑𝐹𝑥(𝑥′, 𝑡)𝑑𝐹𝑣(𝑥′′, 𝑡)

3. the poaching indicator function 1𝑃(𝑥, 𝑥′, 𝑡) satisfies (11),

4. the inventor productivity distribution 𝑓 (𝑥, 𝑡) follows the KF equation (12),

5. the creative destruction rate 𝛿(𝑡) satisfies (13),

6. the labor market tightness 𝜃 (𝑡) satisfies (7), and

7. the instantaneous social gain from a product line 𝜋 (𝑡) is determined so that

log𝜆

𝜌

[
1 −

∫ ∞

0
𝑐 (𝑣 (𝑥, 𝑡)) 𝑓 (𝑥, 𝑡)𝑑𝑥

]
︸                                          ︷︷                                          ︸

Gain in Consumer Surplus from Innovation

=

∫ ∞

0
[𝑆 (𝑥, 𝑡) − 𝑆𝑥 (𝑥, 𝑡) 𝑥] 𝑓 (𝑥, 𝑡)𝑑𝑥.︸                                         ︷︷                                         ︸

Expected Marginal Social Value of Innovation

(19)

The stationary version of the social planner’s allocation is the one where all variables
are constant over time.

By comparing the conditions of competitive equilibrium and social planner’s allocation,
we can see that there are two sources of externalities: innovation and search friction. Below,
we will explain these in turn.

The externality associated with innovation consists of two effects. First, even though
firms can raise the profit from products where they created better technology, they will
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be able to appropriate only a portion of the gain in consumer surplus created by the
innovation. This first effect is called the appropriability effect. Second, the innovator is
stealing the business of the previous producer by replacing it. This second effect is called
the business stealing effect.22 The externality arising from these two effects causes the
discrepancy between the private and social instantaneous gain from a product line, 𝜋. The
instantaneous social gain from a product line is determined so that (19) is satisfied, which
equates the gain in consumer surplus from innovation and the expected social marginal
value of innovation.

The externality associated with search friction also consists of two effects. First, the
increase in vacancy by one firm makes the matching of the other firms difficult due to
congestion. This effect is captured by the fourth line of (18). Because firms do not take into
account this congestion externality, this situation leads to too many vacancies compared
with the socially optimal level.

The second inefficiency that arises from search friction is the hold-up problem. As
in the standard Diamond-Mortensen-Pissarides (DMP) model, our model treats vacancy
posting as a firm’s investment. Matches are formed because of the firms’ investment, and
inventors do not incur any costs. Thus, all returns from the match should be paid to the
firms to ensure an efficient level of investment. However, by the time the inventor and the
firm engage in Nash bargaining, the investment costs are already sunk. As a result, (i) when
the firm hires an inventor, it can collect only a

(
1 − 𝛽

)
share of the surplus in the second

line of (8) and (ii) when the firm loses an inventor, the firm can collect only 𝛽 share of the
surplus in the third line of (8). This inefficiency, due to the firm’s imperfect appropriation
of the surplus, leads to too few vacancies compared with the socially optimal level.23

In our model, R&D activity and knowledge diffusion affect inefficiency through
congestion externality and hold-up problems. All the terms associated with congestion
externality (the fourth line of (18)) and the hold-up problem (the difference in the second
and third lines between (8) and (18)) contain match surplus 𝑀 (𝑥, 𝑥′, 𝑡). From (9), we know
that match surplus captures the net surplus that arises from changes in inventor allocation
and from knowledge diffusion. Therefore, inefficiencies arise in our economy as a result of
the interaction between innovation activities and the externalities stemming from random
search.

22See Chapter 12 of Acemoglu (2008) for more detailed explanation about the typical externalities that
arise from the Schumpeterian growth model.

23The recent paper by Fukui and Mukoyama (2024) discusses the inefficiency of on-the-job search.
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Bargaining Power as a Policy Instrument

We consider the bargaining power 𝛽 as a policy instrument. Achieving the socially optimal
allocation requires policies that are contingent on inventors’ productivity, but such policies
are rare in practice. As a second-best approach, we focus on determining the optimal
bargaining power. Bargaining power can be influenced by the regulation of non-compete
clauses. For example, Shi (2023) models a contractual environment involving non-compete
clauses. In her model, the joint value of the firm and the incumbent worker is maximized—
similar to our framework—with the enforceability of non-compete clauses increasing the
share of surplus captured by the firm and its incumbent worker. Furthermore, in the
standard DMP model, optimal bargaining power can fully eliminate inefficiencies caused
by congestion externalities and hold-up problems. This implies that a significant portion of
these inefficiencies could potentially be mitigated in our model as well. For these reasons,
we consider bargaining power to be the most natural and compelling policy within our
framework.

Our model captures several effects of the strength of non-compete clauses on firms’
decision-making. First, the strengthening of non-compete clauses reduces the share of the
match surplus that a poaching firm can obtain (1 − 𝛽), thereby decreasing the incentive to
hire new inventors. Second, as a result of the first effect, the strengthening of non-compete
clauses increases the incentive to hire inventors because it makes it harder for other firms
to poach them. Third, the strengthening of non-compete clauses increases the share of the
match surplus that a firm receives when its inventor is poached by another firm (𝛽), thus
increasing the incentive to post more vacancies and accumulate more knowledge capital
and inventors.

Relationship with Existing Endogenous Growth Model with Knowledge Diffusion

In this section, we discuss the differences between existing endogenous growth models
that address knowledge diffusion and our model.

First, the way match surplus is distributed differs from that in many models in the
existing literature. Early models, such as Lucas and Moll (2014) and Perla and Tonetti
(2014), as well as models with micro-foundations for inventors like Akcigit et al. (2018)
and Prato (2022), share the feature with our model that agents randomly match, leading
to the knowledge diffusion between them. However, in these existing models, only the
agent receiving the knowledge gains the surplus generated from the match. Consequently,
these models do not internalize the effects of others learning from their own knowledge or
technology.
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Table 4: Functional Forms

Function Description
𝑐(𝑣) = 𝑐

𝜙+1𝑣
𝜙+1 Vacancy cost function

𝑞(𝜃) = 𝑞𝜃𝜂−1 The rate at which a vacancy meets an inventor
𝜇 (𝑥) = 𝜇𝑥𝜖 Internal R&D function
𝛼 (𝑥, 𝑥′) = 𝛼 𝑥

𝑥′ Knowledge capital diffusion function

In Shi et al. (2024) and Benhabib et al. (2021), as in our model, the surplus generated
from a match is allocated between the two agents in fixed proportions based on their
respective bargaining power. However, the bargaining power and its relationship to
economic structures or policies differ between their models and ours. While they associate
bargaining power with the strength of patent enforcement in the real economy, our model—
where knowledge is transmitted through inventor mobility—links bargaining power to
labor market structures or policies concerning inventors, such as the enforceability of
non-compete clauses.

Second, another novel aspect of our model is that it incorporates knowledge diffusion
between firms as a result of inventor job flows. While models with micro-foundations for
inventors, such as those by Akcigit et al. (2018) and Prato (2022), do not account for inventor
mobility between firms, our model explicitly includes this mechanism. By considering
firms’ learning processes through inventor mobility, our model enables analysis that
integrates microdata on inventor job flows and patents.

4 Estimation

In this section, we estimate the model using the German matched employer-employee-
patent data. We describe the assumptions regarding the functional form, the estimated
parameters, the moments that we target, and the estimation method.

4.1 Methodology

First, we make assumptions regarding the functional forms. The vacancy cost function is
𝑐 (𝑣) = 𝑐

𝜙+1𝑣
𝜙+1, as in Kaas and Kircher (2015). The matching function is Cobb–Douglas: A

vacancy meets an inventor at rate 𝑞 (𝜃) = 𝑞𝜃𝜂−1. The internal R&D function is 𝜇 (𝑥) = 𝜇̄𝑥𝜖,
as in Lentz and Mortensen (2008). Finally, we assume that the knowledge diffusion function
is given by 𝛼 (𝑥, 𝑥′) = 𝛼 𝑥

𝑥′ . Note that 𝑥
𝑥′ represents the ratio of the inventor productivity

between the firm from which inventors are poached and the firm poaching the inventors.
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Table 5: Estimated Parameters

Parameter Value Description
A. Externally Set or Normalized

𝜌 0.004 Discount rate
𝑐 1 Scalar of vacancy cost function
𝜙 3.45 Curvature of vacancy cost function
𝜂 0.50 Elasticity of matches w.r.t. vacancies
𝜖 0.50 Innovation elasticity
𝜋 0.23 Instantaneous profit per product line
𝑁 1.95 Total mass of inventors
𝛽 0.50 Bargaining power

B. Estimated Offline
𝛼 0.6141 Scalar of knowledge diffusion function
𝜇 0.0245 Scalar of internal R&D function
𝜎 0.1980 Std. of internal R&D shocks

C. Internally Estimated
𝑞 0.0206 Matching efficiency
𝜆 1.0449 Step size on quality ladder

Table 4 summarizes all the assumed functional forms. These assumptions about the
functional form leave 13 parameters to be determined. We estimate these parameters
through the following three steps.

Externally Set or Normalized

As summarized in Table 5, the eight parameters are set to standard values or normalized.
The discount rate, 𝜌 = 0.004, reflects a 5% annual real interest rate. Since we cannot identify
the scalar of vacancy cost function 𝑐 and the matching efficiency 𝑞 separately, we normalize
𝑐. The vacancy cost elasticity, 𝜙 = 3.45, is based on estimates from Bilal et al. (2022). The
elasticity of matches with respect to vacancies, 𝜂 = 0.50, is based on standard values found
in the literature.24 The innovation elasticity, 𝜖 = 0.50, also follows the standard values in the
literature (e.g., Acemoglu et al. (2018)). The instantaneous profit per product line, 𝜋 = 0.23,
is set so that the markup equals 1.3, following recent research on markup estimates (see
Cavenaile et al. (2023)). The total mass of inventors, 𝑁 = 1.95, is chosen to align with an
average productivity of German inventors, measured by the count of three-year forward
citations.25 When we calibrate the model, the value of 𝛽 is set to 0.5. In the subsequent

24See Petrongolo and Pissarides (2001) for a review.
25In our model, the total knowledge capital is 1. Therefore, the average inventor productivity in the model

is 1/𝑁 . Since the average number of 3-year forward citations for German inventors is 0.512, we set the total
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analysis, we examine in detail how changes in the value of 𝛽 affect the allocation.

Estimated Offline

The parameters of the knowledge diffusion function 𝛼 and the internal R&D function
(
𝜇, 𝜎

)
are obtained by estimating the law of motion for inventor productivity. By subtracting (15)
from (16), we obtain the law of motion for inventor productivity:

𝑑 log 𝑥−1 (𝑥, 𝑡) =
𝑞(𝜃 (𝑡))𝑣 (𝑥, 𝑡)

𝑥

∫ ∞

0
1𝑃(𝑥, 𝑥′, 𝑡)𝛼 (𝑥, 𝑥′) 𝑓𝑥(𝑥′, 𝑡)𝑑𝑥′𝑑𝑡

+
(
𝜇 (𝑥) − 𝛿 (𝑡) − 𝜎2

2

)
𝑑𝑡 − 𝑑 log 𝑛 (𝑥, 𝑡) + 𝜎𝑑𝑊 (𝑡) .

Given the functional forms and innovation elasticity of 𝜖 = 0.5, we estimate the following
regression equation:

Inventor productivity growth rate𝑒 ,𝑡+1 = 𝛼
∑
𝑒′

Inventor inflow rate𝑒′→𝑒 ,𝑡

× Relative inventor productivity𝑒′→𝑒 ,𝑡

+ 𝜇Δ
(
Inventor productivity𝑒 ,𝑡

)−0.5

+ Controls𝑒 ,𝑡 + 𝜀𝑒 ,𝑡

where Controls𝑒 ,𝑡 include net inventor inflow rate, firm fixed effect, and year fixed effect,
and 𝜀𝑒 ,𝑡 has variance 𝜎2Δ. The productivity of inventors is measured by the 3-year forward
citations of their patents. The dependent variable is the growth rate of the average
inventor productivity for inventors who belong to the establishment 𝑒 in both 𝑡 and 𝑡 + 1.26

Inventor inflow rate𝑒′→𝑒 ,𝑡 is the number of inventors newly hired by establishment 𝑒 from
establishment 𝑒′ at time 𝑡, divided by the number of employed inventors in establishment
𝑒 at time 𝑡. Relative inventor productivity𝑒′→𝑒 ,𝑡 is the average inventor productivity in
establishment 𝑒 at time 𝑡, divided by that in establishment 𝑒′ at time 𝑡. The standard
deviation of internal R&D shocks 𝜎 is estimated using the value of the root mean square
error obtained from the regression analysis. We set Δ = 12 because the regression analysis
uses yearly panel data, while the model’s parameters are calibrated so that one unit of time
corresponds to one month. The detailed explanation of the regression analysis and the
reporting of its results have been relegated to Appendix C.1.

mass of inventors such that 1/𝑁 = 0.512.
26To exclude the direct impact of the productivity of newly arrived inventors in the establishment, these

inventors are excluded when calculating the average inventor productivity in period 𝑡 + 1.
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Internally Estimated

The remaining two parameters, matching efficiency 𝑞 and innovation step size 𝜆, are
estimated to match the moments in the data with those in the model. Specifically, we first
estimate 𝑞 to match the 13% annual job-to-job transition rate of German inventors in 2001.
As shown in Definition 1, the economic growth rate and 𝜆 do not affect the competitive
equilibrium. Therefore, after estimating 𝑞, we estimate 𝜆 to match the 2% annual economic
growth rate.

5 Quantitative Exercises

In this section, we begin by examining the allocation outcomes under different values of
bargaining power, as well as the socially optimal allocation. We then analyze the effects
of a ban on non-compete clauses over the transition. Finally, we assess the impact of the
observed decline in inventor mobility in Germany on knowledge diffusion, internal R&D
activities, and economic growth.

5.1 Comparative Statics for Bargaining Power and Social Optimum

We first analyze the characteristics of the steady state of this economy. To examine the
impact of the strength of non-compete clauses on the economy, we conduct comparative
statics on the bargaining power 𝛽. Additionally, we compare these allocations with the
socially optimal allocation.

As shown in Figure 1a, a firm’s vacancy posting policy is U-shaped with respect to
inventor productivity. Posting more vacancies allows firms to hire more inventors, and
at the same time, they acquire more knowledge capital through knowledge diffusion.
Therefore, a firm’s vacancy posting policy depends on both the marginal value of inventors
and the marginal value of knowledge capital for the firm. When the number of inventors 𝑛
is small relative to knowledge capital 𝑘 (i.e., inventor productivity 𝑥−1 = 𝑘/𝑛 is high), the
marginal value of inventors is large (Figure 1c). Conversely, when knowledge capital 𝑘 is
small relative to the number of inventors 𝑛 (i.e., inventor productivity 𝑥−1 = 𝑘/𝑛 is low),
the marginal value of knowledge capital is large (Figure 1d). As a result, a firm’s vacancy
posting policy becomes U-shaped with respect to inventor productivity.

Figure 1a also shows that the quantity of vacancy postings decreases as 𝛽 increases. In
Section 3, we discussed several effects of the strength of non-compete clauses on firms’
vacancy posting decisions. In our model, the strengthening of non-compete clauses
primarily results in (i) a smaller share of the match surplus being obtained by the poaching
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Figure 1: Equilibrium values under various 𝛽 and social optimum
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(c) Ω𝑛(𝑘, 𝑛) = 𝑆𝑥(𝑥)
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(d) Ω𝑘(𝑘, 𝑛) = 𝑆(𝑥) − 𝑥𝑆𝑥(𝑥)
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Figure 2: Aggregate variables under various 𝛽 and social optimum
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firm. Our results indicate that this effect always outweighs two other effects: (ii) a reduction
in vacancy postings by other firms, and (iii) an increase in the match surplus received by
the firm whose inventor is poached.

Figure 2 illustrates the values of aggregate variables. As 𝛽 increases, each firm’s vacancy
posting decreases, leading to a reduction in the share of total vacancy posting costs in
total output (Figure 2a). As a result, labor market tightness decreases (Figure 2b), and the
job-to-job transition rate also declines (Figure 2c) as 𝛽 increases.

Figure 2d illustrates the economic growth driven by internal R&D. In our model,
since the supply of inventors is inelastic, growth from internal R&D is determined by the
allocative efficiency of inventors. Growth driven by inventor R&D is maximized when
inventor productivity 𝑥−1 = 𝑘/𝑛 is equal across all firms. However, the misallocation of
inventors is inevitable in equilibrium due to (i) frictions in the labor market for inventors, (ii)
idiosyncratic shocks, and (iii) the concavity of the internal R&D technology. A reduction in
𝛽, which lowers inventor mobility, worsens the allocation of inventors and reduces growth
from internal R&D.

Figure 2e illustrates the economic growth driven by knowledge diffusion. Growth
from knowledge diffusion accounts for 16.6% of total growth, while the remaining 83.4%
is driven by internal R&D. However, the sensitivity of knowledge diffusion to changes
in inventor mobility is much greater than that of internal R&D. Therefore, the decline in
economic growth due to an increase in 𝛽 (Figure 2f) is primarily driven by the reduction in
knowledge diffusion growth.

In Figure 1, we also plot each variable under the social optimum and the optimal 𝛽.27

The vacancy posting policy under the optimal 𝛽 closely aligns with the socially optimal
vacancy posting policy, especially in regions where the density of inventor productivity
is high. As a result, as shown in Figure 2, the aggregate variables under the optimal 𝛽
achieve values that are very close to the social optimum.

5.2 Ban on Non-compete Clauses and Welfare Implication

In recent years, several countries have implemented or are planning to implement prohibi-
tions or restrictions on non-compete clauses. For example, in April 2024, the Federal Trade
Commission (FTC) banned all non-compete agreements in the US. In May 2023, the UK
Government also announced plans to limit non-compete clauses to a maximum duration
of three months.

To analyze the impact of banning non-compete clauses on economic growth and social
27We discuss the way to find the optimal 𝛽 in Section 5.2.
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Figure 3: Transition dynamics after the ban on non-compete agreements
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welfare, we examine the transition dynamics of our economy. We assume that before
𝑡 = 0, the economy is in a steady state on the BGP under the baseline value of bargaining
power (𝛽 = 0.5). At 𝑡 = 0, the bargaining power permanently changes to 𝛽 = 0. Although
agents do not anticipate this change before 𝑡 = 0, agents have perfect foresight after 𝑡 = 0.
We interpret the economy with 𝛽 = 0 as one where non-compete clauses are completely
banned. This is because when 𝛽 = 0, a firm matching an inventor can successfully poach
by compensating the inventor for their marginal value at the firm where they are currently
employed.

Figure 3 illustrates the transition dynamics of the economy after the policy change,
compared with the BGP of the economy where 𝛽 = 0.5. When 𝛽 becomes 0, the match
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Figure 4: CE welfare change from social optimum (%)
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surplus received by firms that poach inventors increases, leading firms to post more
vacancies. As a result, as shown in Figure 3a, the aggregate cost of posting vacancies,
relative to output, increases by approximately 80%. As shown in Figure 3b, the increase in
inventor mobility not only enhances knowledge diffusion but also improves the allocative
efficiency of inventors, which in turn leads to higher internal R&D growth. Consequently,
the total growth rate of the economy increases, leading to a rise in output, as depicted in
Figure 3c. However, since the vacancy costs, which use final goods, increase, consumption
temporarily decreases, as shown in Figure 3d.

In the economy after the policy change, the consumption-equivalent welfare decreases
by 0.38% compared to the economy without the policy change. The reason why the
prohibition of non-compete agreements does not have a large impact on welfare is that
this policy has both positive effects (an increase in growth due to increased mobility of
inventors) and negative effects (a decrease in consumption due to an increase in vacancy
costs), which offset each other.

What is the optimal regulation of non-compete clauses, and to what extent does it
alleviate inefficiencies in the economy? To answer these questions, we conduct the following
exercise. Suppose the economy starts from the steady state of the social optimum. At
𝑡 = 0, the economy is decentralized, and thereafter, agents have perfect foresight. Then, we
compare social welfare along the transition dynamics of this decentralized equilibrium
with social welfare along the BGP in which the economy continues to achieve the socially
optimal allocation.

In Figure 4, we perform this exercise for different values of 𝛽, ranging from 0 to 0.99 in
increments of 0.01. For each 𝛽, we calculate the difference in social welfare compared to
the socially optimal BGP and plot the results. The optimal 𝛽 in Figures 1 and 2 is the value

35



Figure 5: Inventor mobility decline and its impact on growth rates
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of bargaining power (𝛽 = 0.54) that achieves the highest social welfare in this exercise.
Figure 4 shows that under the optimal 𝛽, the social welfare achieved is almost the same as
that in the social optimum. In other words, the optimal regulation of non-compete clauses
achieves nearly the maximum attainable social welfare, given the production, innovation,
and matching technology.

5.3 Inventor Mobility Decline and Growth

In this section, we analyze the impact of declining inventor mobility on economic growth.
As shown in Figure 5a, data from Germany indicate that the job-to-job transition rate
for inventors decreased from 13.0% in 2001 to 5.1% in 2014. An analysis by Akcigit and
Goldschlag (2023a), using data on American inventors, shows that the hiring rate for
inventors dropped from 7% in 2000, the first observable year, to 3.5% in 2016, the last
observable year.28 While our data is at the establishment level and their data is at the
firm level—resulting in a consistently higher job-to-job transition rate in our data—both
datasets indicate that inventor mobility halved over a similar period.

To analyze the impact of the observed decline in inventor mobility on economic growth
and welfare, we calibrate the path of matching efficiency to match the dynamics of job-to-job
transition rates of inventors in Germany with the model counterpart. Following Akcigit
and Ates (2023), we assume that the path of matching efficiency takes the following simple

28See Figure 11 in their paper
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functional form:

𝑞𝑡 = 𝑞0 +
exp (−(𝑡/𝑇)𝜈) − 1

exp (−𝜈) − 1
(
𝑞𝑇 − 𝑞0

)
for all 𝑡 ∈ [0, 𝑇] .

During the period from 𝑡 = 0 to 𝑡 = 𝑇, the matching efficiency 𝑞𝑡 transitions smoothly
from 𝑞0 to 𝑞𝑇 . The parameter 𝜈 adjusts the speed at which 𝑞𝑡 changes. Until 𝑡 = 0, agents
do not anticipate the changes in 𝑞𝑡 , and after 𝑡 = 0, agents have perfect foresight. After
𝑡 = 𝑇, the matching efficiency is fixed at 𝑞𝑡 = 𝑞𝑇 , but this does not necessarily imply that
the economy reaches a new BGP at 𝑡 = 𝑇. The economy continues to converge to the new
BGP even after 𝑡 = 𝑇.

We calibrate the path of matching efficiency as follows. In our exercise, we set 𝑡 = 0 to
correspond to the year 2001 and 𝑡 = 𝑇 to the year 2014. For 𝑞0, we use the value obtained
from the steady-state calibration in Section 4. In Section 4, the calibration was conducted
to match the job-to-job transition rate in 2001, which is the year corresponding to 𝑡 = 0.
The remaining parameters, 𝜈 and 𝑞𝑇 , are calibrated to match the job-to-job transition rates
in 2007, which is the intermediate year between 𝑡 = 0 and 𝑡 = 𝑇, and in 2014, the year
corresponding to 𝑡 = 𝑇. Along with the targeted job-to-job transition rate of German
inventors, Figure 5a plots the path of the job-to-job transition rate in the calibrated model.

Figure 5b illustrates the impact of declining inventor mobility on the economic growth
rate. A reduction in inventor mobility decreases the growth rate by lowering both internal
R&D and knowledge diffusion. As discussed earlier, the decline in inventor mobility
exacerbates the misallocation of inventors, resulting in slower internal R&D growth.
Furthermore, diminished inventor mobility weakens knowledge diffusion between firms.
Consequently, in the long run, growth from internal R&D declines by 0.04 percentage
points, while growth from knowledge diffusion drops by 0.20 percentage points, leading
to a total reduction of 0.24 percentage points in the economic growth rate. Given that
the economic growth rate in advanced economies is around 2%, the observed decline in
inventor mobility has a significant impact, reducing the growth rate by over 10%. Moreover,
consumption-equivalent welfare decreases by 3.2% compared to social welfare along the
initial BGP, where matching efficiency remains constant.

6 Conclusion

In this paper, we examine how inventor mobility between firms governs knowledge diffu-
sion, long-run growth, and welfare. Using matched German patent and employer-employee
records, we document that job-to-job moves are associated with stronger knowledge diffu-
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sion across firms.
Motivated by these patterns, we build an endogenous economic growth model in which

inventors advance technology both through in-house R&D and by transporting knowledge
when they switch employers. Calibrated to German data, the framework replicates the
mobility dynamics in the data and lets us assess labor-market policies that shape knowledge
diffusion.

Counterfactual exercises deliver three key insights. First, banning non-compete clauses
reduces consumption-equivalent welfare by 0.38%. Second, optimally regulating non-
compete enforcement yields allocations and welfare close to the social planner’s solution.
Third, the observed decline in inventor mobility since the early 2000s lowers growth from
internal R&D by 0.04 percentage points and growth from knowledge diffusion by 0.20
percentage points, cutting overall growth by 0.24 percentage points and reducing welfare
by 3.2% relative to the initial balanced growth path.
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Appendix

Appendix A Empirical Appendix

A.1 Data

Our analyses utilize two administrative data sets, “Linked Inventor Biography Data 1980-
2014” (INV-BIO) and “Sample of Integrated Labor Market Biographies” (Stichprobe der
Integrierten Arbeitsmarktbiografien - SIAB). Both data sets are constructed by the Institute
for Employment Research (IAB).

The SIAB data is a 2% random sample from the Integrated Employment Biographies
(IEB). The IEB combines data from five different sources, each of which may contain
information from various administrative procedures. It comprises all individuals in
Germany who hold at least one of the following employment statuses: employment subject
to social security, marginal part-time employment, receipt of benefits according to the
German Social Code III or II, official registration as a job seeker at the German Federal
Employment Agency, and (planned) participation in programs of active labor market
policies (Dauth and Eppelsheimer 2020 for more detail).

The patent information contained in the INV-BIO dataset is sourced from register
data recorded in PATSTAT, which includes bibliographical, procedural, and legal status
information on patent applications handled by the European Patent Office. Additionally,
data from DPMAregister, the online patent register of the German Patent and Trademark
Office, is incorporated to enhance the PATSTAT data extract. The DPMAregister provides
exclusive records of national patent applications that are not transferred to the European
Patent Office or filed under the PCT (Patent Cooperation Treaty) route. As a result, the
INV-BIO dataset comprises inventors who are listed on patent filings at the European
Patent Office (EPO) between 1999 and 2011 and have been successfully linked with IEB
(Dorner et al. 2018 for more detail). Table A.1 shows the summary statistics for INV-BIO
and SIAB, respectively.

A.2 Robustness Check of Empirical Analyses

Table A.2 shows the transition matrix of inventor flows with wage increases, suggesting
many flows from more productive establishments to less productive ones, even in this
sample. Instead of the probit model in Section 2.2, we estimate the following equation to
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Table A.6: Summary Statistics

(A) INV-BIO

Establishment level variables Mean S.D. 𝑁 of establishments (thous.)
𝑁 of inventors (𝑛𝑒𝑡) 4.9 18.5 119
𝑁 of employees 688.9 2150.6 119
Mean daily wage, Euro 121.6 55.5 119
𝑁 of three-year forward citations for patents 11.3 69.2 119
(three-year backward average, 𝑧𝑒𝑡)
Share of inventors moving from higher productivity
establishments

61.2 49.5 119

(H-Share𝑒𝑡), %
Total inventor inflows 1.67 5.30 119

(B) SIAB

Worker level variables Mean S.D. 𝑁 of workers (thus.)
Dummy for moving to less productive establishments (𝐷𝑖𝑡)
based on establishment size 0.50 - 4,669
based on mean wage 0.52 - 4,583

Dummy for the identified inventors (𝐼𝑖𝑡) 0.10 - 5,691
Daily Wage, Euro 44.4 42.1 5,691
Age 33.7 12.9 5,691
Share of Women, % 47.3 - 5,691

control for fixed effects,

𝐷𝑖𝑡 = 𝛽0 + 𝛽1𝐼𝑖𝑡 + 𝛽2𝑋𝑖𝑡 + 𝛼𝑒 + 𝛼𝑡 + 𝜀𝑖𝑡 (20)

Definitions of variables are the same as in Section 2.2. Table A.3 shows that inventors are
more likely to move to less productive establishments conditional on fixed effects.

Appendix B Theoretical Appendix

B.1 Household’s Problem

The representative household has the preference∫ ∞

0
𝑒−𝜌𝑡 log𝐶(𝑡)𝑑𝑡.

and faces the budget constraint

𝑑

𝑑𝑡
𝐴(𝑡) = 𝑟(𝑡)𝐴(𝑡) + 𝑤(𝑡)𝐿(𝑡) + 𝐼 (𝑡) − 𝑃(𝑡)𝐶(𝑡)

A2



Table A.7: Transition Probabilities of Inventor Flows with Wage Increases

(a) Rank by Citation/Inventor

Origin rank ≤ 50% 50–60 60–70 70–80 80–100
≤ 50% 2.7 0.2 0.3 0.4 4.1
50–60 2.1 0.2 0.2 0.3 3.1
60–70 2.3 0.2 0.3 0.4 3.6
70–80 2.7 0.2 0.3 0.4 3.6
80–100 19.0 1.8 2.1 3.1 45.9

(b) Rank by Establishment Size

Origin rank ≤ 50% 50–60 60–70 70–80 80–100
≤ 50% 3.8 1.2 0.9 0.9 6.6
50–60 0.4 0.8 0.9 0.5 2.1
60–70 0.4 0.2 1.1 1.2 2.8
70–80 0.5 0.3 0.4 1.9 4.9
80–100 3.5 1.5 2.1 3.1 58.2

(c) Rank by Mean Wage

Origin rank ≤ 50% 50–60 60–70 70–80 80–100
≤ 50% 4.4 1.5 1.3 1.4 4.4
50–60 0.9 1.3 1.6 1.1 2.5
60–70 0.8 0.9 2.6 2.9 4.1
70–80 0.7 0.6 1.6 4.8 7.4
80–100 2.0 2.6 2.8 4.9 42.4

Notes: Sample restricted to inventor job moves accompanied by wage increases. Percentile definitions follow
Table 1. Ranks use the previous year’s measure. Sample covers 1980–2014.

where 𝐼(𝑡) is the aggregate income of inventors. Therefore, the solution of the household
problem maximizes the Hamiltonian:

ℋ𝐻 (𝑡 , 𝐴(𝑡), 𝐶(𝑡),𝜆(𝑡)) = log𝐶 (𝑡) + 𝜆(𝑡) [𝑟(𝑡)𝐴(𝑡) + 𝑤(𝑡)𝐿(𝑡) + 𝐼 (𝑡) − 𝑃(𝑡)𝐶(𝑡)] ,

where 𝜆 (𝑡) is the costate variable. We obtain the first order conditions

1
𝐶(𝑡) = 𝜆(𝑡)𝑃(𝑡) (21)

𝜌𝜆(𝑡) − ¤𝜆(𝑡) = 𝜆(𝑡)𝑟(𝑡), (22)
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Table A.9: Estimation Result for Inventor Flows (Linear Model)

𝐷𝑖𝑡

Whole sample Sample with wage ↑
𝐼𝑖𝑡 .008*** .010** .009*** .014***

(.003) (.004) (.003) (.004)
Control

√ √ √ √

Fixed Effects
√ √ √ √

Measure for 𝐷𝑖𝑡 Size Mean wage Size Mean wage
𝑁 2,938,537 2,959,368 1,609,460 1,617,613
Adj. 𝑅2 .25 .22 .21 .20

and the transversality condition

lim
𝑡→∞

[
exp

(
−𝜌𝑡

)
𝜆 (𝑡)𝐴 (𝑡)

]
= 0.

Now focus on a balanced growth path (BGP). The normalization 𝑃(𝑡)𝑌(𝑡) = 1 keeps
nominal output constant, and on a BGP the consumption-output ratio is time-invariant, so
𝑃(𝑡)𝐶(𝑡) is constant as well. Equation (21) then implies that 𝜆(𝑡) is constant. Substituting
this into (22) yields the Euler equation 𝑟 = 𝜌. Along a BGP all real quantities are stationary,
so 𝐶(𝑡), 𝑤(𝑡)𝐿(𝑡), 𝐼(𝑡), and 𝑟(𝑡) are constant. The household budget constraint therefore
implies ¤𝐴(𝑡) = 0 and 𝐴(𝑡) = 𝐴̄ where 𝐴̄ is a constant. The transversality condition reduces
to lim𝑡→∞

[
exp

(
−𝜌𝑡

)
𝐴̄
]
= 0, which holds whenever 𝜌 > 0.

B.2 Final Good Producer’s Problem

Given prices, the competitive final good producers maximize the profit

Π(𝑡) = 𝑃(𝑡)𝑌(𝑡) −
∫ 1

0
𝑝(𝜔, 𝑡)𝑙(𝜔, 𝑡)𝑑𝜔,

subject to the technology

log𝑌 (𝑡) =
∫ 1

0
log (𝑧(𝜔, 𝑡)𝑙(𝜔, 𝑡)) 𝑑𝜔 =

∫ 1

0
log 𝑧(𝜔, 𝑡)𝑑𝜔 +

∫ 1

0
log 𝑙(𝜔, 𝑡)𝑑𝜔.

Therefore, the FOCs are given by

𝑃(𝑡) 𝜕𝑌(𝑡)
𝜕𝑙(𝜔, 𝑡) = 𝑝(𝜔, 𝑡)
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𝑃(𝑡)
(
𝜕 log𝑌(𝑡)
𝜕𝑌(𝑡)

)−1 𝜕 log𝑌(𝑡)
𝜕𝑙(𝜔, 𝑡) = 𝑝(𝜔, 𝑡)

𝑃(𝑡)𝑌(𝑡) = 𝑝(𝜔, 𝑡)𝑙(𝜔, 𝑡).

The choice of the numeraire 𝑃(𝑡)𝑌(𝑡) = 1 implies

𝑝(𝜔, 𝑡)𝑙(𝜔, 𝑡) = 1

for all 𝜔 ∈ [0, 1] and 𝑡 > 0.

B.3 Social Planner’s Problem

In this appendix, we set the current value Hamiltonian of the social planner’s problem and
show the relationship between the variables in Definition 2 and the costate variables.

Define the state variables x(𝑡) and control variables y(𝑡) as:

x(𝑡) =
[
log𝑌(𝑡),

{
𝑓 (𝑥, 𝑡)

}
𝑥∈(0,∞)

]
y(𝑡) =

[
𝛿 (𝑡) , 𝜃 (𝑡) , {𝑣 (𝑥, 𝑡)}𝑥∈(0,∞) , {1𝑃(𝑥, 𝑥′, 𝑡)}𝑥,𝑥′∈(0,∞)

]
Here 𝑓 (𝑥, 𝑡) is the cross-sectional density over inventor types, and 𝑓𝑥(𝑥′, 𝑡) and 𝑓𝑣(𝑥′, 𝑡)
denote the densities over incumbent partner types and vacancy types implied by the
matching technology introduced above. The planner chooses x ≡ {x (𝑡)}𝑡∈(0,∞) and
y ≡ {y (𝑡)}𝑡∈(0,∞) to maximize the social welfare (17) subject to the constraints (4) , (13),
(7), (12), the initial log output log𝑌 (0) = log 𝐿, and the initial density 𝑓 (𝑥, 0) that satisfies
1 =

∫ ∞
0 𝑓 (𝑥, 0)𝑑𝑥 and 𝑁 =

∫ ∞
0 𝑥 𝑓 (𝑥, 0)𝑑𝑥.

Let
𝝀x (𝑡) =

[
𝜆𝑌 (𝑡) ,

{
𝜆 𝑓 (𝑥, 𝑡)

}
𝑥∈(0,∞)

]
denote the costate variables associated with the constraint (4) and (12), and

𝝀y (𝑡) = [𝜆𝛿 (𝑡) ,𝜆𝜃 (𝑡)]

denote the costate variables associated with constraint (13) and (7). Then, we set the current
value Hamiltonian of the social planner’s problem:

ℋ 𝑃
(
x(𝑡), y(𝑡),𝝀x (𝑡) , 𝝀y (𝑡)

)
= log𝑌(𝑡) + log

{
1 −

∫ ∞

0
𝑐 (𝑣 (𝑥, 𝑡)) 𝑓 (𝑥, 𝑡)𝑑𝑥

}
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+ 𝜆𝑌 (𝑡) 𝛿 (𝑡) log𝜆

+ 𝜆𝛿 (𝑡)
[
−𝛿 (𝑡) +

∫ ∞

0

{
𝜇 (𝑥) +

𝑞(𝜃 (𝑡))𝑣 (𝑥, 𝑡)
𝑥

∫ ∞

0
1𝑃(𝑥, 𝑥′, 𝑡)𝛼 (𝑥, 𝑥′) 𝑓𝑥(𝑥′, 𝑡)𝑑𝑥′

}
𝑓 (𝑥, 𝑡)𝑑𝑥

]
+ 𝜆𝜃 (𝑡)

{
𝜃 (𝑡)𝑁 −

∫ ∞

0
𝑣 (𝑥, 𝑡) 𝑓 (𝑥, 𝑡)𝑑𝑥

}

+
∫ ∞

0
𝜆 𝑓 (𝑥, 𝑡)



{
𝑞(𝜃(𝑡))𝑣(𝑥,𝑡)

𝑥

∫ ∞
0 1𝑃(𝑥, 𝑥′, 𝑡)𝛼 (𝑥, 𝑥′) 𝑓𝑥(𝑥′, 𝑡)𝑑𝑥′ + 𝜇 (𝑥) − 𝛿(𝑡)

}
𝑓 (𝑥, 𝑡)

− 𝜕
𝜕𝑥




𝑞(𝜃(𝑡))𝑣(𝑥,𝑡)
𝑥

∫ ∞
0 1𝑃(𝑥, 𝑥′, 𝑡) {1 − 𝛼 (𝑥, 𝑥′)} 𝑓𝑥(𝑥′, 𝑡)𝑑𝑥′

−𝜃 (𝑡) 𝑞(𝜃 (𝑡))
∫ ∞

0 1𝑃(𝑥′, 𝑥, 𝑡) 𝑓𝑣(𝑥′, 𝑡)𝑑𝑥′
−𝜇 (𝑥) + 𝛿(𝑡)

 𝑥 𝑓 (𝑥, 𝑡)


+ 𝜕2

𝜕𝑥2

[
𝜎2

2 𝑥2 𝑓 (𝑥, 𝑡)
]


𝑑𝑥

The optimality conditions consist of

0 =
𝜕

𝜕y(𝑡)ℋ
𝑃
(
x(𝑡), y(𝑡),𝝀x (𝑡) , 𝝀y (𝑡)

)
(23)

𝜌𝝀x (𝑡) − ¤𝝀x (𝑡) =
𝜕

𝜕x(𝑡)ℋ
𝑃
(
x(𝑡), y(𝑡),𝝀x (𝑡) , 𝝀y (𝑡)

)
(24)

0 =
𝜕

𝜕𝝀y (𝑡)
ℋ 𝑃

(
x(𝑡), y(𝑡),𝝀x (𝑡) , 𝝀y (𝑡)

)
(25)

¤x(𝑡) = 𝜕

𝜕𝝀x (𝑡)
ℋ 𝑃

(
x(𝑡), y(𝑡),𝝀x (𝑡) , 𝝀y (𝑡)

)
(26)

and the transversality conditions

lim
𝑡→∞

[
exp

(
−𝜌𝑡

)
𝝀x (𝑡) x (𝑡)

]
= 0.

We can confirm that, when 𝜌 > 0, the transversality condition is satisfied.
Define

𝑆 (𝑥, 𝑡) ≡ 𝜆 𝑓 (𝑥, 𝑡) + 𝜆𝛿 (𝑡)
𝜋 (𝑡) ≡

(
𝜌 + 𝛿 (𝑡)

)
𝜆𝛿 (𝑡)

Then, rearranging the optimality conditions (23)–(26) gives the conditions in Definition 2.
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Table A.10: Inventor Productivity Growth Regressions

Inventor productivity growth rate
Unweighted Weighted by # of inventors∑

𝑒′

[
Inventor inflow rate𝑒′→𝑒 ,𝑡×

Relative inventor productivity𝑒′→𝑒 ,𝑡

]
.352∗∗∗
(.042)

.389∗∗∗
(.053)

.456∗∗∗
(.066)

.614∗∗∗
(.088)(

Inventor productivity𝑒 ,𝑡

)− 1
2 .296∗∗∗

(.007)
.442∗∗∗
(.010)

.168∗∗∗
(.012)

.293∗∗∗
(.023)

Net inventor inflow rate ✓ ✓ ✓ ✓
Year fixed effect ✓ ✓ ✓ ✓
Firm fixed effect ✓ ✓

Root mean square error 0.955 0.886 0.697 0.686
𝑁 12,596 11,458 12,178 11,037

Notes: SEs are reported in parentheses. * 𝑝 < 0.1, **𝑝 < 0.05, *** 𝑝 < 0.01.

Appendix C Quantitative Appendix

C.1 The Estimation of the Law of Motion for Inventors’ Productivity

The estimation results are presented in Table A.10.

C.2 HJB Equation

Note that∫ [
𝑆𝑥(𝑥) + 𝛼 (𝑥, 𝑥′) 𝑥−1 {𝑆(𝑥) − 𝑥𝑆𝑥(𝑥)} − 𝑆𝑥(𝑥′)

]+
𝑑𝐹𝑥(𝑥′)

=

∫
1𝑃(𝑥, 𝑥′)

[
𝛼 (𝑥, 𝑥′) 𝑥−1𝑆(𝑥) + {1 − 𝛼 (𝑥, 𝑥′)} 𝑆𝑥(𝑥) − 𝑆𝑥(𝑥′)

]
𝑑𝐹𝑥(𝑥′)

=

∫
1𝑃(𝑥, 𝑥′)𝛼 (𝑥, 𝑥′) 𝑥−1𝑑𝐹𝑥(𝑥′)𝑆(𝑥)

+
∫

1𝑃(𝑥, 𝑥′) {1 − 𝛼 (𝑥, 𝑥′)} 𝑑𝐹𝑥(𝑥′)𝑆𝑥(𝑥)

−
∫

1𝑃(𝑥, 𝑥′)𝑆𝑥(𝑥′)𝑑𝐹𝑥(𝑥′)

and ∫ [
𝑆𝑥(𝑥′) + 𝛼 (𝑥′, 𝑥) 𝑥′−1 {𝑆(𝑥′) − 𝑥′𝑆𝑥(𝑥′)} − 𝑆𝑥(𝑥)

]+
𝑑𝐹𝑣(𝑥′)

=

∫
1𝑃(𝑥′, 𝑥)

[
𝛼 (𝑥′, 𝑥) 𝑥′−1𝑆(𝑥′) + {1 − 𝛼 (𝑥′, 𝑥)} 𝑆𝑥(𝑥′) − 𝑆𝑥(𝑥)

]
𝑑𝐹𝑣(𝑥′)

= −
∫

1𝑃(𝑥′, 𝑥)𝑑𝐹𝑣(𝑥′)𝑆𝑥(𝑥)
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+
∫

1𝑃(𝑥′, 𝑥)
{
𝛼 (𝑥′, 𝑥) 𝑥′−1𝑆(𝑥′) + {1 − 𝛼 (𝑥′, 𝑥)} 𝑆𝑥(𝑥′)

}
𝑑𝐹𝑣(𝑥′)

Then, the HJB equation is rewritten as

𝜌𝑆(𝑥) =𝜋 − 𝑐 (𝑣 (𝑥))

+
{
𝜇 (𝑥) − 𝛿

}
{𝑆(𝑥) − 𝑥𝑆𝑥(𝑥)} +

𝜎2

2 𝑥2𝑆𝑥𝑥(𝑥)

+
{(

1 − 𝛽
) 𝑞(𝜃)𝑣 (𝑥)

𝑥

∫
1𝑃(𝑥, 𝑥′)𝛼 (𝑥, 𝑥′) 𝑑𝐹𝑥(𝑥′)

}
𝑆(𝑥)

+
{ (

1 − 𝛽
) 𝑞(𝜃)𝑣(𝑥)

𝑥

∫
1𝑃(𝑥, 𝑥′) {1 − 𝛼 (𝑥, 𝑥′)} 𝑑𝐹𝑥(𝑥′)

−𝛽𝜃𝑞(𝜃)
∫
1𝑃(𝑥′, 𝑥)𝑑𝐹𝑣(𝑥′)

}
𝑥𝑆𝑥(𝑥)

−
(
1 − 𝛽

)
𝑞(𝜃)𝑣 (𝑥)

∫
1𝑃(𝑥, 𝑥′)𝑆𝑥(𝑥′)𝑑𝐹𝑥(𝑥′)

+ 𝛽𝜃𝑞(𝜃)𝑥
∫

1𝑃(𝑥′, 𝑥)
{
𝛼 (𝑥′, 𝑥) 𝑥−1𝑆(𝑥′) + {1 − 𝛼 (𝑥′, 𝑥)} 𝑆𝑥(𝑥′)

}
𝑑𝐹𝑣(𝑥′)

We solve the HJB equation using an implicit method. Let Δ denote the step-size and 𝜏

the iteration of the algorithm. Then, given 𝑆𝜏−1(𝑥), the implicit method gives an update

𝜌𝑆𝜏(𝑥) − 1
Δ

[
𝑆𝜏−1(𝑥) − 𝑆𝜏(𝑥)

]
= 𝜋 − 𝑐 (𝑣(𝑥))

+
{
𝜇(𝑥) − 𝛿

}
{𝑆𝜏(𝑥) − 𝑥𝑆𝜏

𝑥(𝑥)} +
𝜎2

2 𝑥2𝑆𝜏
𝑥𝑥(𝑥)

+ (1 − 𝛽) 𝑞(𝜃)𝑣(𝑥)
𝑥

[∫
1𝑃(𝑥, 𝑥′)𝛼(𝑥, 𝑥′) 𝑑𝐹𝑥(𝑥′)

]
𝑆𝜏(𝑥)

+
[
(1 − 𝛽) 𝑞(𝜃)𝑣(𝑥)

𝑥

∫
1𝑃(𝑥, 𝑥′) {1 − 𝛼(𝑥, 𝑥′)} 𝑑𝐹𝑥(𝑥′)

− 𝛽𝜃𝑞(𝜃)
∫

1𝑃(𝑥′, 𝑥) 𝑑𝐹𝑣(𝑥′)
]
𝑥𝑆𝜏

𝑥(𝑥)

− (1 − 𝛽)𝑞(𝜃)𝑣(𝑥)
∫

1𝑃(𝑥, 𝑥′)𝑆𝜏−1
𝑥 (𝑥′) 𝑑𝐹𝑥(𝑥′)

+ 𝛽𝜃𝑞(𝜃)𝑥
∫

1𝑃(𝑥′, 𝑥)
[
𝛼(𝑥′, 𝑥)𝑥−1𝑆𝜏−1(𝑥′)

+ {1 − 𝛼(𝑥′, 𝑥)} 𝑆𝜏−1
𝑥 (𝑥′)

]
𝑑𝐹𝑣(𝑥′)
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[
1
Δ

+ 𝜌 −
{
𝜇(𝑥) − 𝛿

}
− (1 − 𝛽) 𝑞(𝜃)𝑣(𝑥)

𝑥

∫
1𝑃(𝑥, 𝑥′)𝛼(𝑥, 𝑥′) 𝑑𝐹𝑥(𝑥′)

]
𝑆𝜏(𝑥)

−
[
−𝜇(𝑥) + 𝛿 + (1 − 𝛽) 𝑞(𝜃)𝑣(𝑥)

𝑥

∫
1𝑃(𝑥, 𝑥′) {1 − 𝛼(𝑥, 𝑥′)} 𝑑𝐹𝑥(𝑥′)

− 𝛽𝜃𝑞(𝜃)
∫

1𝑃(𝑥′, 𝑥) 𝑑𝐹𝑣(𝑥′)
]
𝑥𝑆𝜏

𝑥(𝑥) −
𝜎2

2 𝑥2𝑆𝜏
𝑥𝑥(𝑥)

=
1
Δ
𝑆𝜏−1(𝑥) + 𝜋 − 𝑐 (𝑣(𝑥))

− (1 − 𝛽)𝑞(𝜃)𝑣(𝑥)
∫

1𝑃(𝑥, 𝑥′)𝑆𝜏−1
𝑥 (𝑥′) 𝑑𝐹𝑥(𝑥′)

+ 𝛽𝜃𝑞(𝜃)𝑥
∫

1𝑃(𝑥′, 𝑥)
[
𝛼(𝑥′, 𝑥)𝑥−1𝑆𝜏−1(𝑥′)

+ {1 − 𝛼(𝑥′, 𝑥)} 𝑆𝜏−1
𝑥 (𝑥′)

]
𝑑𝐹𝑣(𝑥′)

Let 𝑥̃ = log 𝑥. Then,[
1
Δ

+ 𝜌 −
{
𝜇̃ (𝑥̃) − 𝛿

}
−
(
1 − 𝛽

) 𝑞(𝜃)𝑣̃ (𝑥̃)
exp (𝑥̃)

∫
1𝑃(𝑥̃ , 𝑥̃′)𝛼̃ (𝑥̃ , 𝑥̃′) 𝑑𝐹̃𝑥̃(𝑥̃′)

]
𝑆̃𝜏(𝑥̃)

−
[
−
{
𝜇̃ (𝑥̃) − 𝛿 + 𝜎2

2

}
+
(
1 − 𝛽

) 𝑞(𝜃)𝑣̃ (𝑥̃)
exp (𝑥̃)

∫
1𝑃(𝑥̃ , 𝑥̃′) {1 − 𝛼̃ (𝑥̃ , 𝑥̃′)} 𝑑𝐹̃𝑥̃(𝑥̃′)

− 𝛽𝜃𝑞(𝜃)
∫

1𝑃(𝑥̃′, 𝑥̃) 𝑑𝐹̃𝑣̃(𝑥̃′)
]
𝑆̃𝜏
𝑥̃(𝑥̃) −

𝜎2

2 𝑆̃𝜏
𝑥̃ 𝑥̃(𝑥̃)

=
1
Δ
𝑆̃𝜏−1(𝑥̃) + 𝜋 − 𝑐 (𝑣̃ (𝑥̃))

−
(
1 − 𝛽

)
𝑞(𝜃)𝑣̃ (𝑥̃)

∫
1𝑃(𝑥̃ , 𝑥̃′) exp (−𝑥̃′) 𝑆̃𝜏−1

𝑥̃ (𝑥̃′) 𝑑𝐹̃𝑥̃(𝑥̃′)

+𝛽𝜃𝑞(𝜃) exp (𝑥̃)
∫

1𝑃(𝑥̃′, 𝑥̃) exp (−𝑥̃′)
[
𝛼̃ (𝑥̃′, 𝑥̃) 𝑆̃𝜏−1(𝑥̃′)+{1 − 𝛼̃ (𝑥̃′, 𝑥̃)} 𝑆̃𝜏−1

𝑥̃ (𝑥̃′)
]
𝑑𝐹̃𝑣̃(𝑥̃′)

(27)

We now discretize 𝑥̃ on an evenly spaced 𝑁𝑥 grid. Stack these according to:

©­­­­­«
𝑥̃1

𝑥̃2
...

𝑥̃𝑁𝑥

ª®®®®®¬
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Then, (27) can be rewritten in vector form as follows:

𝐴1𝑆
𝜏 − 𝐴2𝑆

𝜏
𝑥 −

𝜎2

2 𝑆𝜏
𝑥𝑥 =

1
Δ
𝑆𝜏−1 + 𝐴0

where the element of 𝑁𝑥 vector 𝑆𝜏 consists of 𝑆̃𝜏(𝑥̃), the element of 𝑁𝑥 vector 𝑆𝜏
𝑥 consists of

𝑆̃𝜏
𝑥(𝑥̃), the element of 𝑁𝑥 vector 𝑆𝜏

𝑥𝑥 consists of 𝑆̃𝜏
𝑥𝑥(𝑥̃), and the 𝑖th element of the 𝑁𝑥-vector

𝐴0 is

𝜋 − 𝑐 (𝑣̃ (𝑥̃)) − (1 − 𝛽)𝑞(𝜃)𝑣̃ (𝑥̃)
∫

1𝑃(𝑥̃ , 𝑥̃′) exp (−𝑥̃′) 𝑆̃𝜏−1
𝑥̃ (𝑥̃′) 𝑑𝐹̃𝑥̃(𝑥̃′)

+ 𝛽𝜃𝑞(𝜃) exp (𝑥̃)
∫

1𝑃(𝑥̃′, 𝑥̃) exp (−𝑥̃′)
[
𝛼̃ (𝑥̃′, 𝑥̃) 𝑆̃𝜏−1(𝑥̃′) + {1 − 𝛼̃ (𝑥̃′, 𝑥̃)} 𝑆̃𝜏−1

𝑥̃ (𝑥̃′)
]
𝑑𝐹̃𝑣̃(𝑥̃′),

Let 𝑎1 be the 𝑁𝑥-vector with elements

1
Δ

+ 𝜌 −
{
𝜇̃ (𝑥̃) − 𝛿

}
− (1 − 𝛽) 𝑞(𝜃)𝑣̃ (𝑥̃)

exp (𝑥̃)

∫
1𝑃(𝑥̃ , 𝑥̃′)𝛼̃ (𝑥̃ , 𝑥̃′) 𝑑𝐹̃𝑥̃(𝑥̃′),

and let 𝑎2 be the 𝑁𝑥-vector with elements

−
{
𝜇̃ (𝑥̃) − 𝛿 + 𝜎2

2

}
+ (1 − 𝛽) 𝑞(𝜃)𝑣̃ (𝑥̃)

exp (𝑥̃)

∫
1𝑃(𝑥̃ , 𝑥̃′) {1 − 𝛼̃ (𝑥̃ , 𝑥̃′)} 𝑑𝐹̃𝑥̃(𝑥̃′)

− 𝛽𝜃𝑞(𝜃)
∫

1𝑃(𝑥̃′, 𝑥̃) 𝑑𝐹̃𝑣̃(𝑥̃′).

Define the diagonal matrices 𝐴1 = diag(𝑎1) and 𝐴2 = diag(𝑎2).
Let 𝐷𝑥 be the 𝑁𝑥 × 𝑁𝑥 matrix that, when pre-multiplying 𝑆𝜏 gives an approximation of

𝑆𝜏
𝑥 , and let 𝐷𝑥𝑥 be the 𝑁𝑥×𝑁𝑥 matrix that, when pre-multiplying 𝑆𝜏 gives an approximation

of 𝑆𝜏
𝑥𝑥 :

𝑆𝜏
𝑥 = 𝐷𝑥𝑆

𝜏

𝑆𝜏
𝑥𝑥 = 𝐷𝑥𝑥𝑆

𝜏

To compute the derivative matrices 𝐷𝑥 , we follow an upwind scheme. That is, we use a
forward approximation when the drift of the state variable is positive, and a backward
approximation when the drift of the state is negative.

The implicit method works by updating 𝑆𝜏 through the following equation:

𝑆𝜏 =

{
𝐴1 − 𝐴2𝐷𝑥 −

𝜎2

2 𝐷𝑥𝑥

}−1 { 1
Δ
𝑆𝜏−1 + 𝐴0

}
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C.3 KF Equation

Analogous to the HJB equation, given 𝑓 𝜏−1(𝑥), the implicit method provides the update:

1
Δ

[
𝑓 𝜏−1 (𝑥̃) − 𝑓 𝜏 (𝑥̃)

]
=

{
𝑞(𝜃)𝑣̃ (𝑥̃)

∫
1𝑃(𝑥̃ , 𝑥̃′)𝛼̃ (𝑥̃ , 𝑥̃′) 𝑑𝐹̃𝜏−1

𝑥̃
(𝑥̃′) + 𝜇̃ (𝑥̃) − 𝛿

}
𝑓 𝜏 (𝑥̃)

− 𝜕

𝜕𝑥̃




𝑞(𝜃)𝑣̃(𝑥̃)
exp(𝑥̃)

∫
1𝑃(𝑥̃ , 𝑥̃′) {1 − 𝛼̃ (𝑥̃ , 𝑥̃′)} 𝑑𝐹̃𝜏−1

𝑥̃
(𝑥̃′) − 𝜃𝑞(𝜃)

∫
1𝑃(𝑥̃′, 𝑥̃) 𝑑𝐹̃𝜏−1

𝑣̃
(𝑥̃′)

−
{
𝜇̃ (𝑥̃) − 𝛿 + 𝜎2

2

}  𝑓 𝜏 (𝑥̃)


+ 𝜎2

2
𝜕2

𝜕𝑥̃2 𝑓
𝜏 (𝑥̃)

This can be rewritten in vector form as follows:

− 1
Δ

(
𝑓 𝜏 − 𝑓 𝜏−1) = 𝐵1 𝑓

𝜏 − 𝐷𝑥𝐵2 𝑓
𝜏 + 𝜎2

2 𝐷𝑥𝑥 𝑓
𝜏

1
Δ
𝑓 𝜏−1 =

{
1
Δ

+ 𝐵1 − 𝐷𝑥𝐵2 +
𝜎2

2 𝐷𝑥𝑥

}
𝑓 𝜏

𝑓 𝜏 =

{
1
Δ

+ 𝐵1 − 𝐷𝑥𝐵2 +
𝜎2

2 𝐷𝑥𝑥

}−1 1
Δ
𝑓 𝜏−1,

where the element of 𝑁𝑥 vector 𝑓 𝜏 consists of 𝑓 𝜏(𝑥̃), the element of 𝑁𝑥 ×𝑁𝑥 diagonal matrix
𝐵1 consists of

𝑞(𝜃)𝑣̃ (𝑥̃)
∫

1𝑃(𝑥̃ , 𝑥̃′)𝛼̃ (𝑥̃ , 𝑥̃′) 𝑑𝐹̃𝜏−1
𝑥̃ (𝑥̃′) + 𝜇̃ (𝑥̃) − 𝛿

and the element of 𝑁𝑥 vector 𝐵2 consists of

𝑞(𝜃)𝑣̃ (𝑥̃)
exp (𝑥̃)

∫
1𝑃(𝑥̃ , 𝑥̃′) {1 − 𝛼̃ (𝑥̃ , 𝑥̃′)} 𝑑𝐹̃𝜏−1

𝑥̃ (𝑥̃′) − 𝜃𝑞(𝜃)
∫

1𝑃(𝑥̃′, 𝑥̃) 𝑑𝐹̃𝜏−1
𝑣̃ (𝑥̃′)

−
{
𝜇̃ (𝑥̃) − 𝛿 + 𝜎2

2

}
.

To construct the derivative matrices, we use a backward approximation when the drift of
the state variable is positive, and a forward approximation when the drift of the state is
negative.
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C.4 Consumption-Equivalent Welfare Gains

Calculation of Consumption Path {𝐶(𝑡)}𝑡≥0

From the resource constraint (14),

log𝐶(𝑡) = log𝑌(𝑡) + log
{
1 −

∫ ∞

0
𝑐 (𝑣 (𝑥, 𝑡)) 𝑑𝐹(𝑥, 𝑡)

}
Inserting (3), we obtain

log𝐶(𝑡) = log𝜆

∫ 𝑡

0
𝛿 (𝜏) 𝑑𝜏 + log 𝐿 + log

{
1 −

∫ ∞

0
𝑐 (𝑣 (𝑥, 𝑡)) 𝑑𝐹(𝑥, 𝑡)

}
(28)

Therefore, we calculate the consumption path {𝐶(𝑡)}𝑡≥0 from the path of creative destruction
rate {𝛿(𝑡)}𝑡≥0 and the current vacancy posting 𝑣 (𝑥, 𝑡) and distribution 𝐹(𝑥, 𝑡) using (28).

Calculation of Welfare 𝑉 ({𝐶(𝑡)}𝑡≥0)

Assume that after period 𝑇, 𝐶(𝑡) grows at the economic growth rate in the final steady
state 𝑔. Then, we calculate 𝑉 ({𝐶(𝑡)}𝑡≥0) numerically from {𝐶(𝑡)}𝑡∈[0,𝑇] and 𝑔 as follows:

𝑉 ({𝐶(𝑡)}𝑡≥0) =
∫ ∞

0
𝑒−𝜌𝑡 log𝐶(𝑡)𝑑𝑡

=

∫ 𝑇

0
𝑒−𝜌𝑡 log𝐶(𝑡)𝑑𝑡 +

∫ ∞

𝑇

𝑒−𝜌𝑡 log𝐶(𝑡)𝑑𝑡

=

∫ 𝑇

0
𝑒−𝜌𝑡 log𝐶(𝑡)𝑑𝑡 +

∫ ∞

𝑇

𝑒−𝜌𝑡 log
{
𝐶(𝑇)𝑒(𝑡−𝑇)𝑔

}
𝑑𝑡

=

∫ 𝑇

0
𝑒−𝜌𝑡 log𝐶(𝑡)𝑑𝑡 + 1

𝜌
𝑒−𝜌𝑇

{
log𝐶(𝑇) + 𝑔

𝜌

}
Calculation of Consumption-Equivalent Welfare Gains ℒ

Definition 3. Let {𝐶(𝑡)}𝑡≥0 denote the consumption path in the economy without policy
change and {𝐶(𝑡)}𝑡≥0 denote the consumption path in the economy with policy change.
Consumption-equivalent welfare gains from policy change is the scalar ℒ such that the consumer
is indifferent between the consumption path {ℒ × 𝐶(𝑡)}𝑡≥0 and the consumption path
{𝐶(𝑡)}𝑡≥0.
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Let 𝑉 ({𝐶(𝑡)}𝑡≥0) denote the welfare:

𝑉 ({𝐶(𝑡)}𝑡≥0) ≡
∫ ∞

0
𝑒−𝜌𝑡 log𝐶(𝑡)𝑑𝑡.

Then,

𝑉 (ℒ × {𝐶(𝑡)}𝑡≥0) =
∫ ∞

0
𝑒−𝜌𝑡 log(ℒ × 𝐶(𝑡))𝑑𝑡

=
logℒ
𝜌

+
∫ ∞

0
𝑒−𝜌𝑡 log𝐶(𝑡)𝑑𝑡

=
logℒ
𝜌

+𝑉 ({𝐶(𝑡)}𝑡≥0)

This implies
logℒ
𝜌

= 𝑉 (ℒ × {𝐶(𝑡)}𝑡≥0) −𝑉 ({𝐶(𝑡)}𝑡≥0)

or equivalently,
ℒ = exp

[
𝜌 {𝑉 (ℒ × {𝐶(𝑡)}𝑡≥0) −𝑉 ({𝐶(𝑡)}𝑡≥0)}

]
Therefore, the consumption-equivalent welfare gain from policy change is calculated as

ℒ = exp
[
𝜌
{
𝑉

({
𝐶̃(𝑡)

}
𝑡≥0

)
−𝑉 ({𝐶(𝑡)}𝑡≥0)

}]
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