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Abstract

We investigate the role of multiproduct firms in shaping resource misallocation

and its impact on aggregate total factor productivity (TFP) growth. Using admin-

istrative data on product transactions between all formal Chilean firms, we provide

evidence that demand shocks to one product affect the production of other products

within the same firm, suggesting that firms engage in joint production. We develop

a framework to measure resource misallocation in production networks with joint

production, deriving non-parametric sufficient statistics to quantify these effects. Ap-

plying the framework to Chile, we find that reallocation effects explain 86% of the

observed aggregate TFP growth for the 2016-2022 period. Ignoring joint production

leads to overestimation of resource misallocation.
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1 Introduction

Resource misallocation across heterogeneous producers has been recognized as a driver
of aggregate total factor productivity (TFP) differences across countries and over time.
To quantify the extent of misallocation, the recent literature has made extensive use of
granular firm-level data.

However, despite its emphasis on micro data, this literature typically ignores the fact
that most firms sell multiple products. For example, 75% of formal firms in Chile report
selling multiple products, and these firms collectively account for 99% of all firm-to-firm
transactions in Chilean tax data. The ubiquity of multi-product firms introduces new
challenges to understanding resource allocation. Specifically, researchers must consider
how the allocation of resources across products within firms affects allocative efficiency
and aggregate TFP. Measuring resource allocation within firms often requires determin-
ing how to assign inputs to specific outputs.

The literature on multi-product firms often assumes product line independence (Klette
and Kortum (2004); Bernard et al. (2011); De Loecker et al. (2016); Hottman et al. (2016);
Mayer et al. (2021)). If firms are collections of independent products, the challenge is
reduced to a measurement problem, and existing theories for single-product firms can
be applied by treating different products as if they are separate firms. However, firms
often simultaneously produce multiple outputs using shared inputs, making it impossible
to assign inputs to specific outputs. Consider an oil refinery that produces diesel and
gasoline concurrently: the inputs—crude oil, labor, and capital—are used to produce both
outputs and cannot be accounted for separately.

How do multi-product firms with non-separable production technologies affect the
measurement of the extent of resource misallocation? We model firms’ technology via
joint non-separable production functions that map bundles of inputs into bundles of mul-
tiple outputs. This approach eliminates the need to define individual product-level pro-
duction functions. The joint production function describes the firm’s flexibility in adjust-
ing its product mix, which then determines the importance of resource allocation within
the firm.

We generalize previous work to accommodate multi-product firms with joint produc-
tion technologies. We provide nonparametric sufficient statistics to measure changes in
allocative efficiency using ex-post data. Our framework is general enough to accommo-
date firm-to-firm linkages. We validate and implement our framework using a granular
firm-to-firm transactions database for Chile. We show that the extent of resource misal-
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location is overstated if we abstract from joint production, as is standard practice in the
literature. While our primary focus is ex-post analysis, we also develop a complementary
parametric framework to understand ex-ante counterfactuals, like the gains from elimi-
nating all distortions, taking into account joint production technologies.

We first describe the theoretical contributions of the paper, then turning to our em-
pirical validation and application. In our model, products within firms can be under-
or overproduced because they face different wedges (e.g., markups). Loosely speaking,
products with relatively high wedges are underproduced. However, since firms interact
with one another, the relevant wedges that affect resource allocation and, hence, aggre-
gate TFP are not just the firm’s own wedges, but the entire chain of cumulative wedges
leading from final demand to the production of the product.

The impact of changes in these cumulative wedges on resource misallocation depends
on how easily firms can adjust their product mix. Consider again the oil refinery exam-
ple. If the oil refinery raises the markup on gasoline, thereby lowering its demand, it
cannot redirect production resources toward diesel because the production technology
yields gasoline and diesel in nearly fixed proportions from crude oil. This technological
constraint limits the firm’s ability to reallocate resources in response to demand changes
and hence limits the extent of misallocation within the firm. Therefore, joint production
technology can attenuate the extent of resource misallocation and its contribution to ag-
gregate TFP.

To quantify the extent of resource misallocation in the presence of joint production, we
develop a nonparametric sufficient statistics approach. Instead of estimating the firm’s
production technology parameters directly, we rely on observed changes in product-level
prices within the firm. Intuitively, if prices for certain products rise within the firm, net of
the markup, then this captures the firm’s inability to easily substitute production across
products. The covariance of cumulative wedges at the product level with relative price
changes captures the attenuation of resource misallocation due to joint production tech-
nology. Intuitively, if prices rise for products with high (cumulative) wedges, then the
scope for reallocation is limited. Theoretically, these price movements, net of markups,
trace out the production possibility frontier, whose slope captures each firms’ techno-
logical constraints when adjusting their product mix. This provides a way to quantify
misallocation without imposing parametric assumptions about firms’ production tech-
nologies.

The growth-accounting formula we develop generalizes previous approaches: it col-

3



lapses to the Baqaee and Farhi (2020) growth accounting result under the single-product
firm assumption and to the Hulten (1978) benchmark under perfect competition.

To implement our framework, we use administrative firm-to-firm transactions data
from the Chilean Internal Revenue Service. The dataset contains product-level prices,
firm-product input-output linkages, and balance sheet variables — enough to construct
our sufficient statistics.

We first validate joint production technology in the data. We examine whether the
standard assumption in the literature — that firms operate as independent single-product
lines — holds. We find that demand shocks to one product significantly affect the produc-
tion of other products within the same firm, indicating that firms employ joint production
technology. In fact, we find that a negative demand shock to a firm’s main product re-
duces the production of alternative products, as predicted by our framework.

Having established the presence of joint production, we implement our sufficient
statistics to conduct a growth accounting exercise. We find that changes in allocative
efficiency explain 86% of TFP growth in Chile from 2016 to 2022. Ignoring joint produc-
tion provides a misleading assessment and substantially overestimates the importance of
resource reallocation.

We attribute this finding to multi-product firms face that constraints when they adjust
their product mix. These constraints limit the scope for product-level resource realloca-
tion within firms, and this affects allocative efficiency and aggregate TFP growth.

As mentioned above, our primary focus is nonparametric ex-post analysis that em-
ploys observed data. However, we also develop a complementary ex-ante approach that
enables counterfactual analysis by imposing a parametric structure for production tech-
nologies and requires knowledge of the curvature in the firm’s production possibility
frontier. We provide an analytical characterization of the extent of misallocation, mea-
sured as the distance to the Pareto-efficient frontier, for multi-product firms with joint
production. Consistent with our earlier finding that joint production constrains realloca-
tion, we find that assuming separable production technologies overestimates the extent
of resource misallocation caused by a given set of wedges.

Related Literature

Our paper contributes to and connects different strands of the literature. We incorporate
multiproduct firms and joint production to extend the literature on misallocation. The
work by Restuccia and Rogerson (2008) and Hsieh and Klenow (2009) show the potential
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importance of resource misallocation in accounting for TFP differences. We contribute
to this literature by developing a framework that allows for multi-product firms (Bernard
et al. (2010, 2011); Mayer et al. (2014); De Loecker et al. (2016); Hottman et al. (2016); Mayer
et al. (2021); Wang and Yang (2023)) and joint production (Powell and Gruen (1968); Diew-
ert (1971); Lau (1972); Hall (1973, 1988); Boehm and Oberfield (2023); Carrillo et al. (2023);
Ding (2023)) and quantifying the impact of resource misallocation.

Recent work has emphasized the need to take into account input-output linkages
when quantifying the extent of these losses (Baqaee and Farhi (2020); Bigio and La’O
(2020)). Our theory provides a flexible framework that allows for arbitrary production
structures, including input-output networks while incorporating joint production, and it
enables the quantification of these effects. 1

Our theory provides a tool for growth accounting (Solow (1957); Hulten (1978); Basu
and Fernald (2002); Petrin and Levinsohn (2012); Baqaee and Farhi (2020); Baqaee et al.
(2023)) that decomposes aggregate TFP growth into technology and allocative efficiency
under joint production in networks and generalizes existing methods to consider multi-
product firms.

Our empirical application uses Chile’s comprehensive product-level transaction database
to quantify misallocation. This approach contrasts with the prior literature on production
networks and misallocation, which typically uses industry-level input-output table. For
example, Baqaee and Farhi (2020) impute US Compustat data using an industry-level
input-output table. Finally, Burstein et al. (2024) uses the same dataset as ours but com-
plements our work by analyzing misallocations that arise from different buyers receiving
varying prices for the same product. 2

Lastly our empirical strategy is related to the literature on shock transmission between
firms. While much of this literature focuses on how supply shocks propagate down-
stream across firms (Boehm et al. (2019); Carvalho et al. (2020); Fujiy et al. (2022); Bai
et al. (2024)) using the granular a firm-to-firm transaction dataset, our empirical strategy
instead analyzes how external demand shocks transmit within firms across their prod-
ucts. We compare our results with existing studies that examine within-firm spillovers of
demand shocks (Giroud and Mueller (2019); Almunia et al. (2021); Ding (2023)). 3

1Our work is also related to the work of Liu (2019) and Dávila and Schaab (2023), which analyzed the
effects of misallocation in input-output linkages on welfare.

2Using a theoretical model grounded in Belgian firm-to-firm transaction data, Kikkawa (2022) examines
firm pair-specific markups.

3This work is related to the literature on production function estimation for multiproduct firms. No-
tably, estimation methods for joint production recently have been developed by Dhyne et al. (2017, 2022);
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The rest of the paper is organized as follows. Section 2 presents the data and moti-
vating facts that highlight the prevalence of multiproduct firms. It also presents empir-
ical evidence that suggests that firms engage in joint production. Section 3 outlines the
theoretical framework, deriving the nonparametric sufficient statistics for measuring al-
locative efficiency explained by multiproduct firms. Section 4 details the data and the
construction of sufficient statistics. Section 5 applies the framework to decompose aggre-
gate TFP growth in Chile for the 2016–2022 period. Section 6 presents ex-ante structural
results. Finally, Section 7 concludes.

2 Reduced Form Evidence

This Section presents empirical facts that motivate our theory of multiproduct firms en-
gaging in joint production. The primary aim of our empirical analysis is to test whether
firms can be treated as collections of independent single-product lines. If this were the
case, existing aggregation theorems could be applied by considering each product as a
separate firm. Our findings, however, reject this separability assumption, revealing in-
terdependencies among products within firms. This result motivates the need for a new
aggregation theorem that we develop in subsequent sections.

We use data from the Chilean Internal Revenue Service (SII), covering all formal firms
in Chile.4 We then employ monthly data from January 2019 to December 2021 to test for
joint production. We exploit the unexpected nature of early COVID-19 lockdowns as a
source of exogenous variation in product-specific demands.

The SII provides detailed information on firm-to-firm transactions through electronic
tax documents. This dataset, which captures every product, quantity, and price traded be-
tween formal Chilean firms, contains data on over 15 million unique firm-specific product
descriptions.5 We divide the value traded over its quantity to obtain average yearly prices

Valmari (2023); Cairncross and Morrow (2023). We estimate the universe of products traded by formal firms
in Chile by formal firms from 2016 to 2022.

4This study was developed within the scope of the research agenda conducted by the Central Bank
of Chile (CBC) in economic and financial affairs of its competence. The CBC has access to anonymized
information from various public and private entities by virtue of collaboration agreements signed with
these institutions. To secure the privacy of workers and firms, the CBC mandates that the development,
extraction, and publication of the results should not allow the identification, directly or indirectly, of natural
or legal persons. Officials of the CBC processed the disaggregated data. All the analysis was implemented
by the authors and did not involve nor compromise the Chilean IRS. The information contained in the
databases of the Chilean IRS is of a tax nature originating in self-declarations of taxpayers presented to the
Service; therefore, the veracity of the data is not the responsibility of the Service.

5The specific invoice variable is called “detail”, which is inherently firm-specific and can differ between
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for every triplet. 6

We examine whether we can treat multiproduct firms as separate product lines (Bernard
et al. (2010, 2011); Hottman et al. (2016); Mayer et al. (2021)). Under this assumption, each
product can be relabeled as a fictitious firm, which can be analyzed using standard single-
product firm frameworks. We examine this assumption’s validity and determine whether
multiproduct firms differ from collections of single-product firms.

To investigate this, we exploit heterogeneous exposure to local buyer shocks for each
firm’s products and investigate whether firms engage in joint production in the spirit of
Ding (2023) but in a production network context. Specifically, We examine how demand
shocks to specific products affect the production of other products within the same firm.
We use monthly data from 2019 to 2021. We treat different establishments of the same
firm as different firms, allowing us to treat regional differences in COVID-19 lockdowns
as exogenous shocks. We sum the monthly quantity traded and value for every buyer
firm-seller firm-product triplet transaction. We divide the value traded over its quantity
to obtain average monthly prices for each triplet.

Our empirical strategy consists of two main components: First, we employ a valida-
tion step to confirm that lockdowns indeed caused a decrease in intermediate input pur-
chases, which can be interpreted as demand shocks from the perspective of supplier firms
with buyers in lockdown areas. Second, we conduct a main event study that examines
how these shocks affect the production of other products within the same firm.

COVID-19 Lockdowns in Chile

Starting in March 2020, the Chilean government declared county-specific lockdowns due
to COVID-19. We focus on March 2020, when the first lockdowns were imposed, to ensure
the shock was unexpected. Figure 1 shows regions that experienced lockdowns in March
2020, illustrating spatial lockdown heterogeneity.

firms even for the same product. For example, one supermarket might declare selling “Sprite can 330cc”
while another declares selling “Sprite 330”. This variation across sellers does not affect our analysis in this
Section as we do not compare identical products across firms.

6In Appendix A.1, the distribution of the number of products is provided
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Figure 1: Distribution of Early Covid-19 lockdown in Chile

Notes: Lockdown counties as of March 2020 are red; all others are gray.

Lockdown Effects on Intermediate Input Purchases

Before proceeding to our main analysis, we establish that COVID-19 lockdowns resulted
in reduced intermediate input purchases by buyers in lockdown areas, which can be in-
terpreted as a negative demand shock to suppliers in non-lockdown areas.

We posit that intermediate input transactions declined between suppliers in unaf-
fected (gray) counties and buyers in counties that experienced early COVID-19 lock-
downs (red). To test this hypothesis, we estimate the following reduced-form specifi-
cation at the buyer level:

log Mit = β Lockdownit + FEt + FEi + εit, (1)

where Mit denotes total intermediate input purchases of a firm i at time t and Lockdownit

is a dummy variable equal to one if firm i’s location was under lockdown at time t, and
is zero otherwise. To address potential bias arising from buyers in lockdown areas who
purchased from suppliers in lockdown areas, we restricted the sample by including only
buyers with suppliers in non-lockdown areas.
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Table 1: Lockdown and intermediate input purchases

(1) (2) (3)

Lockdown Dummy -0.222*** -0.230*** -0.191***

(0.0524) (0.00521) (0.0589)

Firm FE Y Y Y

Time FE N N Y

Sector × Time FE N Y N

Restricted sample N N Y

Observations 4,345,534 4,345,534 378,646

Notes: The Table reports the results of estimating equation (1) by ordinary least squares (OLS), clustered
at the firm-municipality level. The sample periods are January 2019 to March 2020. Columns (1) and (2)
report results for the full sample. Column (3) presents the results restricted to firms with no suppliers in
the lockdown area. Three stars indicate statistical significance at the 1% level.

The results confirm our hypothesis: The coefficient of interest, β, is negative, indicating
that purchases of intermediate inputs from lockdown counties decreased by about 20%
on average. This result confirms that we can interpret the decrease in purchases as a
negative demand shock to intermediate inputs sold by firms in non-lockdown regions to
buyers in lockdown regions.

Emprical Evidence for Joint Production

Having validated our use of lockdowns as a source of demand shocks, we now focus on
the central question of our analysis: do firms engage in joint production?

To investigate this, we examine how a demand shock to one product affects the pro-
duction of other products within the same firm. We focus on shocks to a firm’s main
product, defined as the product with the highest sales from January 2019 to December
2021. We define a firm as experiencing a demand shock to its main product if at least one
buyer of its main product is located in an area that implemented a lockdown in March
2020 due to the initial COVID-19 outbreak. This definition focuses on the early lock-
downs to ensure the exogenous nature of the shock, as these initial closures were largely
unexpected.
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To quantify this effect, we study the impact of demand shocks to a firm’s main product
on the production of its other products using an event-study specification for all products
g , m:

log Xigt =

10∑
j=−11
j,−1

β jDi,t− j + FEig + FEt + εigt, (2)

where Xigt represents either the quantity or price of product g for firm i at time t. Di,t− j

is a treatment indicator equal to one if firm i was treated j months ago. FEig and FEt are
firm-product and time fixed effects, respectively. The coefficients of interest are βt, which
capture the effect of the main product’s demand shock on other products’ quantities or
prices at different time points relative to the shock.

To obtain unbiased estimates of β j, the treatment indicator Di,t− j must be conditionally
orthogonal to the error term εigt. A key concern is that supply-side shocks could be cor-
related with the lockdown if suppliers and main product buyers are located in the same
area, potentially confounding our results. To address this issue and isolate the impact of
demand shocks from the main product while ruling out direct supply shocks, we impose
the following restrictions:

1. Firm Location: The firm itself is not located in an area under lockdown.

2. Supplier Location: The firm’s direct suppliers are not subject to lockdown shocks.

3. Buyer Location for Product g: None of the buyers of product g are located in lock-
down areas.7

Restrictions 1 and 2 help eliminate direct supply-side effects, ensuring that any ob-
served changes in production are not due to supply disruptions that affect the firm or its
suppliers. Restriction 3 ensures that product g is not subject to a direct demand shock,
allowing us to attribute any changes in its production to the demand shock that affects
the main product m.

Our treatment group consists of firms that meet these conditions and experience a
demand shock to their main product in March 2020. The control group includes firms
that satisfy the conditions but whose main products did not experience a demand shock

7Within the same firm, the set of buyers often differs across products. Therefore, even if the main
product’s buyers are affected by the lockdown, it does not necessarily imply that buyers of other products
are similarly affected. This distinction is further detailed in Figure A1 of Appendix A.1.
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until t (i.e., the buyers of the main product have never been in a lockdown area from
March 2020 until t). Figure 2 presents the results of regression (2) 8.

Figure 2: The effects of demand shocks to the main product on the production of other
products within the firm

(a) Log Quantity (b) Log Price

Notes: Standard errors are clustered at the firm-county level, and the error bands represent 95% confidence
intervals. The X-axis represents the time to treat, with 0 denoting March 2020, when the main product
experienced the demand shock. The other values indicate the number of months before or after this event.

First, prior to the shock, the differences in quantities and prices between the treatment
and control groups remained stable and close to zero. This observation supports the
parallel trends assumption and aligns with the interpretation that the initial closures were
unanticipated. Second, we detect a significant quantity effect: at the time of the shock
(t = 0), there is a 14% decrease in the quantity of non-main products when the main
product experiences a demand shock. Notably, this effect persists throughout the post-
shock period, indicating that the impact is not transitory. Third, we observe an increase
in the price of non-main products on impact. This price increase remains elevated above
the pre-shock level even ten months after the initial shock. In addition to the quantity
response, this price response is consistent with the assumption of joint production, which
will be introduced in the next section.

8A comparison of observable characteristics between the treatment and control groups is provided in
Table A1 of Appendix A.1
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Discussion on Other Within-Firm Spillover Mechanisms

Our empirical results are inconsistent with separable production functions. This out-
come suggests that demand shocks to one product affect the production of other products
within the same firm. Next, we compare our findings to those of previous studies.

First, Almunia et al. (2021) propose a model of diminishing returns to scale or firm-
specific factors at the firm level to explain how a decline in domestic demand in Spain
affects exports. Their model predicts that when there is a negative demand shock for a
product in one market, firm-specific factors are reallocated to another product in another
market, positively affecting the production of the same product in other markets. This
prediction contrasts with our findings, which show negative spillovers across products
within the same firm.

Second, Ding (2023) focuses on industries that share knowledge-intensive inputs to ex-
amine joint production effects in the US using Census data. This paper, like ours, predicts
that when a product faces a negative demand shock, it negatively affects other products.
The study interprets the model prediction as knowledge spillovers across industries shar-
ing intangible inputs; however, knowledge spillovers are unlikely to explain our results.
The differences in time horizon (five years vs. monthly data) and research and develop-
ment (R&D) intensity (Chile’s R&D spending is less than one-tenth that of the US as a
percentage of GDP) limit its applicability to our context.

Giroud and Mueller (2019) use US multiregion firm data to model demand-driven
regional spillovers based on financial constraints. In this model, firms facing credit con-
straints optimize resource allocation across regions. A negative demand shock in one
region reduces employment in other regions due to shared financial constraints within
the firm. This mechanism predicts a negative response: a negative shock to one prod-
uct would lead to reduced production of other products through financial constraints. In
addition, although Giroud and Mueller (2019) do not report price reactions, Kim (2020)
finds that firms in financial distress reduce product prices by selling off inventory, which
is contrary to the results of this paper and suggests a negative price response. In Ap-
pendix A.1, we conduct the same event study using a subset of firms unlikely to be under
financial constraints. The results do not change significantly, suggesting they are unlikely
to be driven solely by financial constraints.

Our results suggest that multiproduct firms are not collections of independent prod-
uct lines. These empirical results motivate the theoretical framework we develop in the
following section.
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3 A Theory to Aggregate Distortions in Networks with Mul-

tiproduct Firms

Having established empirically that firms engage in joint production, we now develop
a theoretical framework to analyze resource misallocation in production networks with
multiproduct firms. The key challenge is that firms use shared inputs to produce multiple
outputs simultaneously, making it impossible to separately account for inputs used for
each product. Our framework addresses this challenge by developing a general network
model that accommodates joint production.

In our theoretical framework, we use the terms ”markup” and ”wedge” interchange-
ably to refer to any distortion that creates a gap between price and marginal cost. This
can include various distortions such as taxes, subsidies, or financial frictions.

The section proceeds as follows. First, we formalize the concept of joint production
and introduce key assumptions. To build intuition, we then present simplified examples
that illustrate how joint production affects resource allocation and aggregate TFP. Next,
we develop our general network model with multiproduct firms and define the relevant
input-output concepts. Finally, we introduce cumulative wedges - our key theoretical
object for measuring misallocation - and present our main aggregation theorem.

3.1 Joint Production

We begin by formalizing the concept of joint production, where firms simultaneously use
shared inputs to produce different products.

To formalize this concept, we follow Hall (1973)’s approach to joint production tech-
nology. Let J

(
q, x

)
be a joint production function, where q is a vector of outputs and x is

a vector of inputs. The joint cost function is derived from the firm’s cost minimization
problem, as follows:

C
(
q,p

)
≡ min

x∈V(q)
p′x,

where V
(
q
)

is the input requirement set, V
(
q
)
=

{
x|J

(
q, x

)
≥ 0

}
and p is a vector of input

prices. We introduce two assumptions about the shape of a joint production function,
which will be used throughout this paper.

Assumption 1. Constant return to scale (CRS): J
(
q, x

)
= 0 implies J

(
λq, λx

)
= 0 for any
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scalar λ.

Unlike a single-output production function, the output is a vector. Note that we do
not assume CRS for each single-output production function.

Assumption 2. Separability between Input and Output Functions: The joint production
function can be written as J

(
q, x

)
= −FQ (

q
)
+FX (x), and the joint cost function as C

(
q, x

)
=

H
(
q
)
φ

(
p
)
.

Note that this differs from assuming separable production functions, where the out-
put, q, is a single product, not a vector; it degenerates to FQ(q) = q. Example 1 illustrates a
joint production function satisfying assumptions 1 and 2:

Example 1. Constant Elasticity of Transformation Output Bundle and Constant Elasticity
of Substitution Input Bundle (CET-CES):∑

g

q
σ+1
σ

g


σ
σ+1

︸        ︷︷        ︸
Output bundle

= A
(
L
θ−1
θ + K

θ−1
θ

) θ
θ−1︸             ︷︷             ︸

Input Bundle

,

The associated cost function is

C
(
q,w, r

)
=

1
A

∑
g

q
σ+1
σ

g


σ
σ+1 (

w1−θ + r1−θ
) 1

1−θ
,

where L and K are the two inputs, w and r are their prices, and q is a vector of outputs.
The input bundle takes a standard CES function with elasticity of substitution θ, and

the output is a vector of products rather than a scalar. The parameter σ is called the
constant elasticity of transformation; it gives a constant value to the production possibility
frontier’s curvature of the products within a firm. This example is illustrative as our
theoretical framework requires no parametric assumption.

3.2 Parametric Examples of Misallocation with Joint Production

Before presenting the general framework, We provide simplified examples to help gain
an intuition about how joint production affects resource allocation and aggregate TFP.
Proofs are provided in Appendix D.
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3.2.1 Without joint production

We begin with an example of a production network with multiproduct firms but without
joint production. Consider an economy with two firms, as illustrated in Figure 3.

Figure 3: A simplified economy with production networks and multiproduct firms

firm 1

firm 2

µ

µ

µ

Labor

product1 product2

Y = C1/2
1 C1/2

2

Firm 1 uses labor to produce two differentiated products using labor (L) as unique
input, q11 = L1, q12 = L2, where L = L1 + L2. Product 1 is sold to firm 2, while product
2 is sold directly to households. For simplicity, we assume that both products have the
same markup, µ. Firm 2 uses product 1 from firm 1 as a production input and produces a
different product using a linear technology (q2 = q11) that sells to households with markup
µ. Final consumption goods are aggregated using a Cobb-Douglas function Y = c1/2

1 c1/2
2 ,

where c1 = q2, c2 = q12. In this simple economy, Y is the real GDP, and aggregated TFP can
be defined as TFP = Y/L.

In a production network environment, distorted resource allocation arises from firms’
own markups and downstream firm’s markup. In this example, product 1 is sold to
households with double marginalization; firm 1 charges a markup to firm 2, and firm 2
charges a markup to the household. As a result, product 1 from firm 1 suffered from a
higher distortion than product 2 from firm 1, both relative to a perfect competition setup.

Assume that product 1 from firm 2 receives a shock that reduces its markup (∆ logµ21 =

−ϵ). This shock increases demand for product 1, which is too small to begin with. By tak-
ing a first-order approximation of the change in aggregate TFP, we obtain the following
response:

∆ log TFP =
µ − 1

2(1 + µ)
ϵ > 0.
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As product 1’s markup decreased, the production of product 1 increased, increasing
a portion of the economy that was too small to begin with because of a higher initial
markup. Also, product 1’s relative price decreased. As a result, the household shifts
away from product 2 and increases its consumption of product 1 (indirectly through firm
2’s product), which boosts aggregate TFP.

3.2.2 Joint Production

Next, we introduce joint production into our simplified economy. Instead of separate pro-
duction functions for each product, firm 1 uses a joint production technology to produce
both products simultaneously: (

q
σ−1
σ

11 + q
σ−1
σ

12

) σ
σ−1

= L1.

Assume that product 1 from firm 2 receives the same shock as before, and that reduces
its markup (∆ logµ21 = −ϵ). By taking a first-order approximation of the change in TFP,
we obtain the following response:

d log TFP =
(
σ

σ + 1

) ( µ − 1
2
(
1 + µ

)) ϵ > 0.

A negative markup shock induces a relative price decline, triggering a substitution
effect that shifts household expenditures towards product 1 (indirectly through firm 2
product). Parameter σ governs the elasticity of transformation between the two prod-
ucts of firm 1—that is, how easily firm 1 can adjust its product mix for its two products.
The elasticity of transformation will determine the changes in aggregate TFP, which we
illustrate in two extreme cases.

As σ approaches infinity, firm 1 can freely choose the ratio of products in response to
a markup decrease to one of its products. The change in aggregate TFP converges to the
maximum possible improvement as firm 1 can freely adjust its production inputs for each
of its products.

Conversely, as σ approaches zero, the production technology becomes Leontief in out-
puts, with fixed proportions. To illustrate this, consider a petroleum refining firm that
produces gasoline (product 1) and diesel (product 2). Diesel production is constrained by
the refining process’s specific technological and chemical properties of crude oil; the firm
cannot easily switch the oil used to produce gasoline to produce diesel.
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This rigidity in production means that refineries remain bound to produce gasoline
and diesel fuel in fixed proportions despite relative prices or demand changes. Conse-
quently, the potential for production factors reallocation disappears, eliminating aggre-
gate TFP growth changes in response to markup changes.

While an infinite or zero σ are extremes, these examples illustrate that ignoring the
rigidities associated with joint production may lead to overestimating aggregate TFP
changes in response to shocks; this is consistent with most literature, which implicitly
assumes σ approaches infinity.

The degree to which joint production constrains aggregate TFP growth is an empirical
question. It depends on how easily firms can adjust inputs to produce different outputs,
which may vary between firms and within firms for different products.

In the next section, we develop a framework to measure these effects in a general
production network setting without requiring parametric assumptions about the joint
production technology.

3.3 General Network Setup

Regarding input-output notation and definitions, we follow Baqaee and Farhi (2020) to
present our generalization and add product-level (instead of firm-level) objects. Without
joint production, every product can be considered a fictitious firm so that the Baqaee and
Farhi (2020) setup applies.

Multiproduct Firms

Firm i ∈ N produces product g ∈ G and uses products g′ ∈ G from other firms j ∈ N
and factors (Labor, L and Capital, K) as production inputs. 9 We assume the following
production set with CRS and separability between input and output functions:

FQ
i


{
qig

}
g∈G︸  ︷︷  ︸

outputs

 = AiFX
i


{
xi, jg′

}
j∈N,g′∈G︸         ︷︷         ︸

Intermediate product g′ from j

,Li,Ki

 , (3)

Firms charge a product-specific markup, µig, over its product-specific marginal cost;
thus, the price is defined as pig = mcigµig.

9We treat factors exhibiting zero return to scale production functions; they generate production inputs
without using inputs from other firms.
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Final Demand

A representative household with a homothetic utility function of U
(
cig, ..., cNG

)
receives

income from factor payments and profits from firms they own, following a budget con-
straint: ∑

i∈N

∑
g∈G

pigcig =
∑

f∈{L,K}

w f L f +
∑
i∈N

∑
g∈G

(
1 − 1/µig

)
pigqig.

Each product can be consumed by final consumers (cig) or used as an input in production
by other firms (x ji,g). The following resource constraint applies:

qig = cig +
∑
j∈N

x jig,
∑
i∈N

Li = L,
∑
i∈N

Ki = K.

Figure 4 presents a stylized representation, showing the flow of products.

General Equilibrium

Given a vector of firm-level productivity, A, and vector of product-level markups, µ, for
all i ∈ N and g ∈ G, the general equilibrium is a set of prices (pig) intermediate input
choices (xi jg′), factor input choices (Li,Ki), output, (qig), and consumption choices (cig). As
such, (i) the price of each product is equal to its markup multiplied by its marginal cost;
(ii) households maximize utility under budget constraints, given prices; and (iii) markets
are clear for all products and factors.
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Figure 4: Graphical illustration of networks with multiproduct firms

Final Demand

gfirm i

firm j
1 g’

1

Labor Capital

Notes: The dashed line represents firms’ universe N , the dotted circled line represents each firm’s bound-
ary, and the circled line represents each product within a firm. The two top nodes represent factors, and the
bottom node represents households. Arrows represent the direction of input flows.

3.4 Input–Output Definitions

To state our decomposition results, we introduce notation for input-output relationships
at the product level.

Product-Level Input–Output Matrix

The product-level input–output matrix Ω̃ is a (NG + F ) square matrix. Here, N is the
number of firms, Gis the number of products, and F is the number of factors. Ω̃ has at its
ig, jg′th element the expenditure share of product g′ from firm j and factor f ∈ F used by
firm i in production over firm i total costs (of producing all its products). The separability
assumption indicates that the same expenditure share applies for all products, g, that firm
i produces; thus, Ω̃ig, jg′ and Ω̃ig, f are as follows.

Ω̃ig, jg′ =
p jg′xi, jg′∑

j,p p jg′xi, jg′ +
∑

f w f Li f
, Ω̃ig, f =

w f Li f∑
j,p p jg′xi, jg′ +

∑
f w f Li f

.
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The product cost-based Leontief inverse Ψ̃ captures each firm-product pair’s direct and
indirect cost exposures through production networks. We use each Ψ̃ element to measure
the weighted sum of all paths between two nonzero firm-product pairs.

Ψ̃ ≡ (I − Ω̃)−1 = i + Ω̃ + Ω̃2 + . . .

We define the final consumption share vector, b, as follows:

big =


pigcig

GDP if i ∈ N , g ∈ G

0 otherwise

We set GDP to be the numeraire and define the product-level cost-based Domar weight,
λ̃ig. 10 This measures the importance of product g from firm i in final demand in two di-
mensions: directly when sold to final consumers, and indirectly through the production
network when product g is sold to other firms and eventually reaches final consumers via
downstream production networks.

λ̃′ ≡ b′Ψ̃ = b′ + b′Ω̃ + b′Ω̃2 + . . .

Firm-Level Aggregation

Summing over products by firms allows us to recover the firm-level cost-based Domar
weight λ̃i, which we use to compute the within-firm product-level Domar weight share
sig:

λ̃i =
∑
g∈G

λ̃ig, sig =
λ̃ig

λ̃i
.

Finally, we define firm-level aggregate markup as follows:

µi =
sales of i

total cost of i
,

10We denote Λ̃ f with f ∈ {L,K}.
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National Accounts

GDP is defined as the sum of all product values consumed by final consumers: GDP =∑
i∈N

∑
g∈G pigcig. Real GDP (Y) changes can be computed as follows:

d log Y = d log GDP −
∑
i∈N

∑
g∈G

pigcig

GDP
d log pig.

Factor shares are defined as

ΛL =
wL

GDP
, ΛK =

rK
GDP

.

3.5 Cumulative Wedges

We now define the cumulative wedges, Γig, which is the critical input to our proposed
sufficient statistic strategy. The cumulative wedge is defined as the ratio of the prod-
uct cost-based Domar weight, λ̃ig, to the product sales share (to GDP), adjusted by the
product-level wedge.

Definition 1. Cumulative Wedge of firm i’s product g:

Γig ≡
λ̃ig

λig︸︷︷︸
downstream wedges

× µig︸︷︷︸
own wedge

.

where λig denote sales share of firm i’s product g over GDP.

The cumulative wedge summarizes the cumulative distortion in the downstream sup-
ply chain of product g sold by firm i. In efficient economies, with no markups, the product
cost-based Domar weight equals observed sales shares, generating a cumulative wedge
equal to one for all products and firms. Conversely, in an inefficient economy, a portion of
the indirect demand transmitted from downstream firm-product pairs to upstream firm-
product firms is absorbed as profit by downstream firms. This effect accumulates in each
supply chain transaction upstream until indirect demand reaches product g sold by firm
i; thus, the sales share of a product is smaller relative to an efficient economic outcome.
Therefore, the larger the ratio, the greater the cumulative wedges in the downstream sup-
ply chain.
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Next, we define the relative product cumulative wedges, which ranks product distor-
tions within a given firm. It is measured as the relative downstream wedge of product g
with respect to the average distortion of all products within firm i, Γi.

Definition 2. Relative Cumulative Wedges

γig ≡
Γig

Γ̄i
,

where the (harmonic) average wedge of firm i is defined as: Γ̄i = Esi

(
Γ−1

(i,g)

)−1

.

A Simple Example of Cumulative Wedge

To illustrate how cumulative wedges capture distortions, we revisit our simplified econ-
omy composed of two firms and a representative household. We normalize GDP to 1;
hence, in this setup, sales (shares) to final consumption are (1/2) for products 1 and 2;
however, firm 1’s sales of product 1 are reduced by the markup charged by firm 2, which
is (1/2)/µ.

The product cost-based Domar weights are 1/2 for products 1 and 2. In matrix no-
tation, the value-added share vector (b) and the product cost-based input-output matrix
(Ω̃) are:

b =



1/2

0

1/2

0


, Ω̃ =



0 0 0 1

0 0 0 1

1 0 0 0

0 0 0 0


,

where the matrix and vector components are arranged in the following order: product 1
and 2 of firm 1, firm 2, and labor. Therefore, the product cost-based Domar weights can
be computed as:

λ̃′ = b′ + b′Ω̃ + b′Ω̃2 + . . . ,

=
[

1/2, 0, 1/2, 0
]

︸                    ︷︷                    ︸
Final demand

+
[

0, 1/2, 0, 0
]

︸                 ︷︷                 ︸
Indirect demand

.

=
[

1/2, 1/2, 1/2, 0
]
.

22



These weights represent the counterfactual sales shares if markups were removed while
keeping expenditure shares constant. Following the definition, the cumulative wedge is
Γig =

λ̃ig

sales shareig
× µig for firm 1:

Γ11 =
1/2

(1/2)/µ
µ = µ2, Γ12 =

1/2
(1/2)

µ = µ.

The following Table 2 summarizes the results.

Table 2: Sales share, cost-based Domar weight, and cumulative wedge in this example

product 1 of firm 1 product 2 of firm 1

(1) Sales share (1/2)/µ 1/2

(2) Cost-based Domar weights 1/2 1/2

(3) Cumulative Wedge: (2)/(1) × own markup µ2 µ

The markup of product 2 from firm 1 and the product from firm 2 equal µ. Compara-
tively, product 1 from firm 1 has a larger cumulative wedge of µ2 than that of product 2,
reflecting the product’s markup and the downstream distortions the product faces. In this
case, product 1 from firm 1 generates a distortion by charging a markup; it is subject to an
additional distortion downstream production networks because firm 2 uses a marked-up
input on its production. The sum of both distortions is the main driver when the multi-
product channel of allocative efficiency, discussed in the next section, is characterized.

3.6 Aggregation Theorem with Multiproduct Firms within Production

Networks

To allow for joint production and derive sufficient statistics, this section generalizes the
concept of an allocation matrix introduced by Baqaee and Farhi (2020).

Let X be an (N + F ) × (NG + F ) admissible input allocation matrix; the columns are
buyer firms, and the rows are seller-product pairs. Each element, Xi jg =

xi jg

q jg
, is the share

of the output of product g produced by firm j that firm i uses as a production input.
A productivity shock (d log A) and a markup shock (d logµ) effect in real GDP, Y, can

be decomposed into a pure change in productivity (d log A) for a given fixed allocation
matrix X and changes in the distribution of X (dX), holding productivity constant. In
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vector notation:

d logY =
∂ logY
∂ log A

d log A︸            ︷︷            ︸
∆ Technology

+
∂ logY
∂X

d logX︸            ︷︷            ︸
∆ Allocative Efficiency

. (4)

We now present a decomposition of changes in aggregate TFP that considers multi-
product firms and arbitrary production networks with product-level distortions.

Proposition 1. Growth Accounting in Production Networks with Multiproduct Firms: To a first
order, aggregate TFP can be decomposed into technology and allocative efficiency terms as follows:

d log TFP =
∑
i∈N

λ̃id log Ai︸          ︷︷          ︸
∆ Technology

+
∑
i∈N

λ̃iCovsi

(
d log pi,

1
γi

)
︸                        ︷︷                        ︸

Multiproduct Term

−

∑
i∈N

λ̃id logµi −

∑
f∈F

Λ̃ f d logΛ f︸                                 ︷︷                                 ︸
Single Product Term︸                                                                       ︷︷                                                                       ︸

∆ Allocative Efficiency

, (5)

where γi =
(
γi1, ..., γiG

)
and d log pi =

(
d log pi1, ..., d log piG

)
.

Appendix D presents the proof. The change in aggregate TFP can be decomposed into
technology and allocative efficiency terms. The technology term represents a weighted
average of changes in firm-level Hicks-neutral productivity using cost-based Domar weights.
The allocative efficiency term is further decomposed into a multiproduct firm term, a
change in aggregate factor shares, and firm-level average markup changes.

The multiproduct term captures the allocative efficiency implications of firm-level
product mix adjustments. The contribution to each product’s allocative efficiency de-
pends on the product’s price relative to the firm’s average price change and the product’s
relative cumulative wedge in the product’s product mix. In economies with joint pro-
duction, the opportunity cost of changing the product mix is generally not constant. This
means that it may vary from firm to firm and product pair to product pair, affecting the
product level unit cost, depending on the curvature of the production possibility frontier.

For example, an oil refinery producing gasoline and diesel may face different con-
straints when adjusting its production mix compared to a dairy farmer producing milk
and meat. The observed relative price changes per product contain all the information on
the production possibility frontier for this firm. The implication for allocative efficiency
of the price change associated with a change in the product mix can then be computed us-
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ing the covariance of the relative price changes and the cumulative wedges of the product
whose price has changed.

Suppose the price change for a given product g in firm i is higher than the average
price change for firm i, and product g is more distorted than the average product within
firm i. In this case, the covariance will be positive. Intuitively, the covariance of cumu-
lative wedges at the product level with relative price changes captures the attenuation
of resource misallocation due to joint production technology. Intuitively, if prices rise
for products with high (cumulative) wedges, then the scope for reallocation is limited.
Theoretically, these price movements, net of markups, trace out the production possibil-
ity frontier, whose slope captures each firms’ technological constraints when adjusting
their product mix. To calculate the aggregate effect across the economy, we can sum these
firm-level covariances using Domar weights, which indicate its macroeconomic impor-
tance. This aggregation allows us to quantify the overall impact of product mix changes
on allocative efficiency in the economy.

Regarding the single product term, which consists of factor shares and firm-level
markup, if the initial equilibrium is inefficient, the products charging markups are under-
produced relative to an efficient economy. Improving the allocation involves reallocating
resources to a more distorted part of the economy, such as firms’ product pairs that charge
relatively high markups. A decrease in factor shares implies reallocating resources to the
portion of the economy that has relatively high markups; however, if the change in factor
share is due to a change in markup, this is a mechanical change and does not imply real-
location. Therefore, the contribution of the change must be purged, which the firm-level
markup term captures. The factor shares and firm-level markup terms are proposed by
Baqaee and Farhi (2020). Both terms are valid under a joint production approach and,
together with the multiproduct term this work introduces, constitute allocative efficiency.

Relation to Existing Aggregation Theorems

Proposition 1 nests existing aggregation theorems for production networks as a special
case.

Corollary 1. Baqaee and Farhi (2020): If no firms engage in joint production and impose the same
markup on all their products (the single-product firm assumption), then to a first order, aggregate
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TFP growth can be decomposed into technology and allocative efficiency terms as follows.

d log TFP =
∑
i∈N

λ̃id log Ai︸          ︷︷          ︸
Technology

−

∑
i∈N

λ̃id logµi −

∑
f∈F

Λ̃ f d logΛ f︸                                   ︷︷                                   ︸
Allocative Efficeincy

.

The proof follows from the fact that the covariance term from proposition 1 is zero because the
changes in marginal cost and markup for all products within a firm are equal.

Our approach quantifies misallocation through the multiproduct channel by measur-
ing deviations from the single-product, single-markup assumption when product-level
data are available; if this assumption holds, the multiproduct term becomes zero. The as-
sumption of uniform marginal costs and markups is unlikely to hold in practice; however,
its quantitative relevance remains an empirical question. Our decomposition quantifies
the extent to which this assumption is violated and isolates the impact of existing misal-
location literature.

Finally, without markups, when prices equal marginal costs, allocative efficiency con-
verges to zero. In this case, all aggregate TFP changes are attributed to technology, align-
ing with Hulten (1978).

Corollary 2. Hulten (1978): Growth Accounting in an Efficient Economy:

d log TFP =
∑
i∈N

λ̃id log Ai︸          ︷︷          ︸
Technology

.

The proof follows from the fact that the markup is always 1, the markup change term is 0, and
the sum of factor shares is always 1. Therefore, the sum of factor changes is always 0, and the
covariance of the multiproduct term is 0 because γi =

(
γi1, ..., γiG

)
are all 1 in an efficient economy.

Proposition 1’s formula converges to Hulten’s theorem when the economy is efficient.
Measured aggregate TFP growth equals the Domar weighted sum of firm-level produc-
tivity changes.

Applying Our Formula to the Simple Example

We revisit our simple example to illustrate how we can apply our decomposition formula
without knowing the specific joint production structure. Appendix D provides the proofs
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for this example. Consider the economy where firm 1 employs workers to produce two
differentiated products using a joint production technology:(

q
σ+1
σ

11 + q
σ+1
σ

12

) σ
σ+1

= L1.

Applying our decomposition, we find the following steps. First, we compute the mul-
tiproduct term as follows:

Covsi

(
d log pi,

1
γi

)
= −

( 1
σ + 1

) ( µ − 1
2
(
1 + µ

)) ϵ > 0.

The single product term is:

−

∑
i∈N

λ̃id logµi︸         ︷︷         ︸
Firm-level Markup

− d logΛ f︸   ︷︷   ︸
Aggregate Labor Shares

=

(
µ − 1

2
(
1 + µ

)) ϵ.

Therefore,

∆ log TFP =
σ

σ + 1

(
µ − 1

2
(
1 + µ

)) ϵ > 0.

We recover the results from subsection 3.2.2 using Proposition 1. Importantly, we
can see that the multiproduct term partially offsets the single-product term. The single-
product term suggests a positive reallocation effect due to the markup reduction. How-
ever, the multiproduct term, which is negative, dampens this effect. This dampening
occurs because joint production constrains the firm’s ability to freely adjust its product
mix in response to the markup shock. The net effect on TFP, although still positive, is
smaller than what would be predicted if only the single product term were considered.

This example illustrates that ignoring the rigidities associated with joint production
can lead to overestimating the TFP contribution of misallocation. Our sufficient statistics
automatically detect whether each firm engages in joint production without the need to
identify a parametric elasticity of transformation. Some firms may operate independent
product lines, while others face strict constraints when they adjust their product mix. The
relative price variations of products sold to different buyers within the firm contain all
relevant information about the cost of exchanging two goods.
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4 Data and Construction of Sufficient Statistics

Our analysis relies on a dataset that covers the universe of formal firms operating in Chile
from 2016 to 2022; the data are from the Chilean Internal Revenue Service (Servicio de
Impuestos Internos, SII). The Chilean tax system requires all formal firms to declare their
invoices for transactions with other firms, which provides detailed information on every
product, quantity, and price traded. Additionally, we use tax accounting declarations,
which provide monthly data on each firm’s revenue and input expenditures, including
capital and labor costs. A key advantage of the SII data is its use of unique identifiers for
firms and workers, which allows individual and firm data to be merged across datasets.
We utilize four distinct sources from SII.

The first is the value-added tax form, which includes gross monthly firm sales, mate-
rials expenditures, and investment.

Second, the SII provides information from a matched employer–employee census of
Chilean firms from 2005 to 2022. Specifically, firms must report all payments to individ-
ual workers, including the sum of taxable wages, overtime, bonuses, and any other labor
earnings for each fiscal year. All legal firms must report to the SII; thus, the data cover the
total labor force with a formal wage contract, representing roughly 65% of employment
in Chile. For any given month, it is possible to identify an individual worker’s employ-
ment status, their average monthly labor income that year, a monthly measure of total
employment, and the distribution of average monthly earnings within the firm.

Third, income tax form data includes yearly information on all sources of a firm’s
income and expenses. This form allows for computing every individual’s actual tax pay-
ments for each year. Details on sales and employment are available on this form; however,
we use only data on capital stock for each firm and year. This approach allows us to build
perpetual inventories using data from the monthly F22 form. We obtain the user cost
of capital by multiplying nominal capital stock by the real rental rate of capital, which
is built using publicly available data. We use the 10-year government bond interest rate
minus expected inflation plus the external financing premium. Finally, we use the capital
depreciation rate from the LA-Klems database.

Fourth are electronic tax documents from 2016 onward. These documents provide
information on each product (price and quantity) traded domestically or internationally
with at least one Chilean firm. We only use domestic transactions and observe the firm-to-
firm transactions and a firm’s sales (including firm-to-firm and firm-to-consumer sales).
We compute firm-specific product shares for firm-to-firm transactions and assume that
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their distributions are equivalent to firm-to-consumer transactions to recover the com-
plete distribution of firm sales by product. Each firm-to-firm transaction includes a “de-
tail” column that records the name of each product.

Building on the data cleaning process described in section 2, we process the data to
construct product code-level output and input-price indices for each firm using standard
Tornqvist indices. We aggregate products into a 290 product-code identifier to facilitate
comparison between firms, allowing us to estimate product production functions that use
the same product across firms.

4.1 Data Cleaning and Implementation Strategy

We begin the data processing by applying filters to the raw data to obtain the final database
for empirical analysis. We define a firm as a taxpayer with a tax ID, positive sales, pos-
itive materials, positive wage bill, and capital for any given year. We exclude firms that
hire less than two employees a year or have capital valued below US$20 in a year. All
variables are winsorized at the 1% and 99% levels to mitigate measurement error.

We selected 2016 as the base year for price indices because it was the first year we
observed prices for firm-to-firm transactions. This method is widely recognized for es-
timating aggregate production functions at the firm or plant level when price data is
accessible. We use crosswalks developed at the Central Bank of Chile (Acevedo et al.
(2023)) to address the challenge of product aggregation (from around 15 million prod-
ucts to 290 product codes). We create aggregated product-level quantity produced and
material usage indices, matching product descriptions and characteristics to ensure con-
sistency across firms and over time.

4.2 Construction of Sufficient Statistics

We measure five distinct objects to implement the growth accounting framework that
includes the multiproduct channel: (1) product-level cost-based Domar weights λ̃, (2)
product-firm level price indices, (3) product-level markups µ, (4) cumulative wedges,
and (5) aggregate objects. We discuss each of these in the following subsection.

4.2.1 Product-Level Cost-Based Domar Weights

The product cost-based Domar weights can be calculated using the following equation:
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λ̃′ ≡ b′Ψ̃ = b′ + b′Ω̃ + b′Ω̃2 + . . .

To compute these weights, we must measure value-added shares (b) and the input–
output matrix (Ω̃). We measure these objects directly from the data.

Final expenditure shares (b) are represented by a vector of dimension (NG + F ) × 1.
Here, N is the number of firms, G is the number of products, and F is the number of
factors. The first NG entries are calculated as the residual between a firm product’s total
sales and its intermediate sales to other firms (measured from the firm-to-firm data). This
approach provides a theory-consistent measure of final expenditures. The final F entries
are set to zero because households do not directly purchase factors. Using firm-to-firm
records and factor expenditures, we construct the input–output matrix Ω̃ at the product-
firm level.

Specifically, we compute an annual cost-based input–output matrix by product. We
calculate the denominator of each element (indexed by ig, jg′) by summing a firm’s pur-
chases from all its suppliers, its wage bill, and its capital multiplied by the relevant user
cost rental rate of capital. The last two elements of the matrix have wage bills and capital
expenditures as their numerators.

The resulting Ω̃ is a (NG + 2) × (NG + 2) matrix that can be expressed as follows:

Ω̃ =



Ω̃11,11 · · · Ω̃11,NG Ω̃11,NG+1 Ω̃11,NG+2

. . .

Ω̃NG,11 Ω̃NG,NG Ω̃NG,NG+1 Ω̃NG,NG+2

0 · · · 0 0 0

0 · · · 0 0 0


.

Based on the separability assumption, the same expenditure share applies to all products
g that firm i produces. The expressions for Ω̃ig, jg′ and Ω̃ig, f are as follows:

Ω̃ig, jg′ =
p jg′xi, jg′∑

j,p p jg′xi, jg′ +
∑

f w f Li f
, Ω̃ig, f =

w f Li f∑
j,p p jg′xi, jg′ +

∑
f w f Li f

.

Factors do not require inputs; thus, the last row of the matrix is zero.
After calculating the product-level cost-based Domar weights, we sum them for the

same firms to compute the firm-level cost-based Domar weights and their shares. These
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will be inputs for Proposition 1.

λ̃i =
∑
g∈G

λ̃ig, sig =
λ̃ig

λ̃i
.

4.2.2 Product-Firm Level Price Indices

We observe prices for each transaction and aggregate them into 290 product categories.
We construct two types of price indices: output and input price indices. We compute
firm-product-specific annual price indices for the output price index, which is an input to
sufficient statistics that deflates product output for production function estimation. The
original data are at the “detail” product level, which we aggregate to a Tornqvist index for
each 290 product category the firm owns. Specifically, we construct the following price
index:

∆ log Pigt =
∑
d∈g

sidt + sidt−1

2
∆ log Pidt,

where d is the detailed category belonging to the upper product category (290 product
codes). ∆ log Pidt is the price change, and sidt is the share at time t in the continuing prod-
ucts in category g. We construct our price index with 2016, the starting year of the data,
as the base year. We also construct an input price index to deflate material costs for pro-
duction function estimation. We define one aggregate index per firm because aggregate
materials are used as inputs in production function estimation. The construction method
is the same as for the output price index.

4.2.3 Cumulative Wedges

To construct the cumulative wedge measure, we need product cost-based Domar weights,
product sales shares, and product markups :

Γig ≡
λ̃ig

salesshareig︸       ︷︷       ︸
Downstream wedge

× µig︸︷︷︸
own markup

.

As discussed in Section 3, the ratio of cost-based Domar weights to sales share rep-
resents the cumulative wedge accumulated downstream of a product. The downstream
wedge is calculated using cost-based Domar weight and its sales share. The remaining
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markup for the own markup needs to be estimated.
As our baseline specification, we employ the accounting approach, wherein markups

are assumed to be homogeneous within firms and are computed as the ratio of firm-level
sales to firm-level costs. In this setting, variation in cumulative wedges across products
within firms emerges solely from heterogeneity in downstream wedges. This setting is
consistent with single-product firm models (e.g., Baqaee and Farhi (2020)), thereby fa-
cilitating direct comparison of our findings with the existing literature under equivalent
conditions in the next Section.

In the Appendix C, we present alternative results using markup estimates based on
Dhyne et al. (2022)’s methodology. We find that this approach yields nearly identical ag-
gregate results, which can be attributed to the fact that most of the variation in cumulative
wedges stems from downstream wedges. 11

Ranking of Downstream Wedges

The analysis reveals that cumulative wedges primarily represent accumulated down-
stream wedges rather than product-level markups. We ranked products by their cumu-
lative wedges to better understand which products face increased downstream wedge.
Below, we describe and discuss the major product categories. Appendix B presents the
complete list of the 30 top and bottom items.

The product categories with the greatest (downstream) wedge mainly comprise busi-
ness services. For example, insurance brokerage services top the list, followed by employ-
ment services (recruitment and supply), electricity distribution to businesses, and postal
and courier services. These products are usually upstream inputs that other firms use in
production, suggesting insufficient size as wedges accumulate through the supply chain
before they reach final demand. An important exception is tobacco, a product close to
final demand but ranked high (15th) because of the large wedge accumulated (59.7% tax
rate vs 19% VAT tax for other products).

Conversely, the least distorted products include cakes, beer, pet food, personal ser-
vices such as hospitals, and minerals (copper, silver, and molybdenum), that are Chile’s
primary export industry. These products are common downstream products close to
Chile’s final demand. As a result, the number of supply chains that reach the final con-

11We estimate product-level markups using the production function approach developed by Dhyne et al.
(2022), which extends the Ackerberg et al. (2015) production function estimation technique to a joint pro-
duction setting.
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sumer is relatively small, and inefficiencies are relatively less likely to accumulate.

4.2.4 Aggregate Objects

In addition to product cost-based Domar weights and cumulative wedges, we must mea-
sure aggregate objects to implement the sufficient statistics presented in Proposition 1. In
particular, Y, L, K, ΛL, and ΛK denote aggregate value-added, employment, capital, and
labor and capital shares, respectively. We measure Y, L, and K as the sum of value added,
employment, and capital, respectively, for all firms in the economy. Factor shares of GDP,
ΛL and ΛK, are measured as total compensation and capital with user cost of capital di-
vided by GDP. Real GDP is calculated by deflating GDP with the official GDP deflator.

5 Application: Decomposing Aggregate TFP Growth

This section applies Proposition 1 to analyze aggregate TFP growth for the Chilean econ-
omy. Our analysis covers 2016 to 2022, during which Chile’s aggregate TFP stagnated and
decreased at the margin. This productivity trend aligns with the pattern of productivity
stagnation observed in Chile using different computation methods. 12

We begin by presenting results using the standard assumption in the literature of
single-product firms. If firms produce a single product, then Corollary 1 applies:

d log TFP =
∑
i∈N

λ̃id log Ai︸          ︷︷          ︸
Technology

−

∑
i∈N

λ̃id logµi −

∑
f∈F

Λ̃ f d logΛ f︸                                   ︷︷                                   ︸
Allocative Efficeincy

.

This approach implements growth accounting but overlooks multiproduct firms en-
gaged in joint production. Figure 5 illustrates the decomposition of cumulative changes
in aggregate TFP from 2016 to 2022 under this assumption.

Figure 5 shows that the allocative efficiency term (in red) declined over this period.
This outcome suggests that high-markup firms contracted further, resulting in a nega-
tive reallocation effect; however, the contribution of allocative efficiency exceeds that of
the technology (residual) component, particularly during the COVID-19 pandemic and
the subsequent high inflation period. To rationalize this disparity, the technology term,
measured as a residual, must have increased by about 20%.

12CNEP (2023)
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Figure 5: Cumulative TFP growth decomposition: Ignoring multiproduct term
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Notes: This Figure shows the cumulative change calculated by applying Corollary 1 repeatedly each year.
Technology (residual) is calculated by subtracting allocative efficiency from TFP growth.

Next, we incorporate the multiproduct term using Proposition 1:

d log TFP =
∑
i∈N

λ̃id log Ai︸          ︷︷          ︸
∆ Technology

+
∑
i∈N

λ̃iCovsi

(
d log pi,

1
γi

)
︸                        ︷︷                        ︸

Multiproduct term

−

∑
i∈N

λ̃id logµi︸         ︷︷         ︸
Firm-level Markup

−

∑
f∈F

Λ̃ f d logΛ f︸           ︷︷           ︸
Aggrregate Factor Shares︸                                                                           ︷︷                                                                           ︸

∆ Allocative Efficiency

.

(6)
Figure 6 presents the results incorporating the multiproduct term, which reduces the

magnitude of the technology (residual) observed in Figure 5. In other words, the multi-
product and single-product misallocation terms account for a larger portion of aggregate
TFP movements during the COVID-19 pandemic and the resultant high inflation period.
13

13Appendix C shows that the accounting markup approach has almost the same aggregation implica-
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Figure 6: Cumulative TFP growth decomposition with multiproduct term
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Notes: This Figure shows the cumulative log change calculated by repeatedly applying the equation from
Proposition 1 each year. Technology (residual) is calculated by subtracting allocative efficiency from aggre-
gate TFP growth.

Reallocation effects that consider joint production explain 86% of the observed ag-
gregate TFP growth. Conversely, as shown in Figure 5, ignoring joint production leads
to overestimating resource misallocation. This result suggests that considering joint pro-
duction considerably decreases the reallocation implied under the traditional assumption
that firms produce only single products.

This finding is consistent with the joint production mechanism described in Section
3. When firms engage in joint production, they create multiple products using common
inputs. When a given product receives a shock, if firms face technological constraints to
adjust their product mix (non-infinite elasticity of transformation), firms will struggle to
reallocate productive resources from one product to another. The reallocation through
substitution among products within multi-product firms is dampened, and reallocation
is not materialized to the extent suggested under the single-product firm assumption.

tions.
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Figure 7: Cumulative TFP growth Decomposition with multiproduct term
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Notes: This Figure decomposes the cumulative change in allocative efficiency in Figure 6 into single-
product and multi-product terms.

Furthermore, Figure 7 breaks down the allocative efficiency in Figure 6 into multi-
product and single product terms. It shows that the offsetting of reallocation due to joint
production will become particularly strong after 2020. During this period, the economy
was disrupted by COVID-19 and subsequent high inflation. We interpret the latter as
firms facing changes in product-specific demands, which changed their total demand
composition. In response, firms were willing to readjust their product mix by reallocating
productive resources. However, due to the non-infinite elasticity of transformation, firms
were constrained to change their product mix.

Finally, the granularity of the data allows us to track the distributional changes of joint
production (the multiproduct term) that limit the extent of resource reallocation. Since the
covariance degenerates to zero under the single-product firm assumption, the dispersion
of covariance implies that joint-production forces are active. These distributions vary
from period to period. Figure 8a plots the distribution for pre-COVID-19 (2016–2019),
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which is symmetric around 0, with slight differences from year to year.
Figure 8b presents the distribution after the onset of COVID-19, showing a shift to the

right from year to year, resulting in a right-skewed distribution. This result suggests that
the increase in the contribution from joint-production forces (the multiproduct term) was
not driven by a few specific firms.

Figure 8: Covsi

(
d log pi, 1

γi

)
distributions by year

(a) 2016 - 2019
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(b) 2019 - 2022
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Notes: These Figures plot the distribution of firm level Covsi

(
d log pi, 1

γi

)
for each year.

Finally, Figure 9 plots the median variance of product-specific production changes
across firms from 2016 to 2022. This figure provides suggestive evidence that aligns with
the changing distribution of multi-product firms shown in Figure 8b and corresponds
to the period of significant contribution from the multi-product term in our decomposi-
tion. The increasing variance, particularly the sharp rise from 2019 to 2020 and its sus-
tained high level thereafter, indicates that firms have been under greater pressure to ad-
just their product mix. This trend coincides with the timeframe when we observe the
most substantial impact of the multi-product term on allocative efficiency. The temporal
consistency between the increased variance in product-specific production changes and
the heightened contribution of the multi-product term reinforces our model’s emphasis
on the importance of multi-product firms engaged in joint production, especially during
major economic shocks like the COVID-19 pandemic.
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Figure 9: Large Product Mix Adjustments and Efficiency: Suggestive Evidence
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Notes: This figure depicts the evolution of the median variance of product quantity changes, denoted as
Varλi

(
d log qig

)
, from 2016 to 2022.

6 Extension: Ex-Ante Structural Results

This section develops a structural framework to predict how economies with multiprod-
uct firms respond to shocks. While our previous analysis relied on observed price and
factor share changes, we now model these endogenous responses explicitly. This theo-
retical extension allows us to move beyond ex-post measurement to ex-ante prediction of
counterfactual scenarios. The framework complements our earlier results.

We show how to apply this framework to study the distance to the Pareto-efficient
frontier when firms use joint production technology. This method compares output in an
efficient equilibrium (with all markup wedges removed) to that in a distorted decentral-
ized economy. Our analysis demonstrates how the theoretical results of previous studies,
such as those of Hsieh and Klenow (2009) and Baqaee and Farhi (2020), change when
firms engage in joint production. Since an economy without markups is unobservable, a
model is necessary to analyze this counterfactual case.

6.1 The Nested CET-CES Model

We propose the nested CET-CES model, which provides a tractable framework for our
analysis. We use the same setup with subsection 3.3 but impose the CET-CES functional

38



form to the joint production function to the equation 3. We then derive a linear system for
price and sales responses, allowing us to characterize the economy’s response to shocks.
The production technology is given by:

∑
g

δig

[
qig

] σi−1
σi


σi
σi−1

︸                  ︷︷                  ︸
Output bundle

= Ai

∑
g

ωi, jg′q
θi−1
θi

i, jp + ωi,LL
θi−1
θi

i + ωi,KK
θi−1
θi

i


θi
θi−1

︸                                             ︷︷                                             ︸
Input Bundle

. (7)

Here, σi represents the elasticity of transformation between different outputs, Ai de-
notes the productivity of firm i, and δig are the output share parameters. The input bundle
comprises intermediate inputs qi, jg′ , labor Li, and capital Ki, aggregated using a CES func-
tion with an elasticity of substitution θi. Note that this class of models is highly general,
nesting the nested CES system widely used in macroeconomics and international eco-
nomics as a special case. For single-output firms, the production function degenerates
to:

qi = Ai

 ∑
j∈N ,g′∈G

ωi, jg′q
θi−1
θi

i, jg′ + ωi,LL
θi−1
θi

i + ωi,KK
θi−1
θi

i


θi
θi−1

︸                                                  ︷︷                                                  ︸
Input bundle

. (8)

Furthermore, we specify the household utility function as a CES aggregator over final
consumption goods. Formally, the representative household’s utility function is given by:

U
(
c11, ..., cig, ..., cNG

)
=

 ∑
i∈N ,g∈G

ψigc
θ0−1
θ0

ig


θ0
θ0−1

(9)

where cig represents the consumption of product g from firm i, ωig represents the taste
parameter for each product, and θ0 is the elasticity of substitution between products.

For analytical simplicity, we assume a uniform substitution elasticity within the firm’s
CES structure, though extending the model to incorporate further nesting would be straight-
forward.

6.2 Linear System for Price and Sales Responses

Using this model, we construct a system for solving the first-order response to primitive
shocks (A, µ) to the endogenous variables. This system of linear equations, derived from
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the model’s first-order conditions, enables us to generate ex-ante predictions of how the
economy will respond to counterfactual shocks. We begin with the multi-product firm’s
forward equation under the CET output function:

Proposition 2. Multi-Product firm’s forward equation under CET output function:

d log pig = −
∑

j∈N ,g′∈G

Ψ̃ig, jg′
(
d logµ j − d log A j

)
+

∑
f∈F

Ψ̃ig, f d logΛ f︸                                                                 ︷︷                                                                 ︸
Indirect cost exposure

+
∑

j∈N ,g′∈G

cR
j Ψ̃ig, jg′d logΘ jg′︸                         ︷︷                         ︸

Indirect exposure to the Product Mix adjustment

,

where

d logΘ jg′ =

(
σ j

σ j + 1

)
d logµ jg′/µ jr +

1(
1 + σ j

) [
d logλ jg′/λ jr

]
,

and cR
j =

mc jrq jr∑
mc jgq jg

is a reference product cost share. Here, r denotes a reference good.

This equation describes how changes in unit prices within a firm due to markups,
productivity shocks, and price changes associated with endogenous product mix adjust-
ments are transmitted through production networks to other firms’ products. The first
term illustrates the effect of exposure to common cost shocks on prices, a force present in
standard production network models. The second term, unique to the joint production
model, indicates the exposure of firms with nonlinear production possibility frontiers to
modify their product mix due to reallocation, which affects endogenous unit costs. The
magnitude of this effect depends on the transformation elasticity, with lower elasticities
leading to larger cost effects. As σ approaches infinity, this endogenous effect disappears,
as firms can freely adjust their product mix.

Next, we consider backward propagation:

Proposition 3. Backward propagation:

λigd logλig = −
∑

j∈N ,g′∈G

λ jg′
(
Ψ jg′,ig − 1

(
ig = jg′

))
d logµ jg′

+
∑

k∈N ,g′′∈G

λkg′′

µkg′′

(
1 − θk

)
CovΩ̃(kg′′ ,:)

(
d log p,Ψ(:,ig)

)
.
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This equation, based Baqaee and Farhi (2020) methodology, describes the sales and
factor share response. Notably, it does not contain σ, indicating that joint production
only affects the changes in sales share via substitution effects. The equation shows how
shocks propagate through the production network, affecting markups and quantities of
each product via changes in upstream suppliers’ price indices and productivity.

By combining the forward equation from Proposition 1 and the backward equation
from Proposition 2, we obtain a complete system of linear equations that characterizes
the economy’s response to shocks. This system consists of 2 × (1 +N ×G + F ) equations
and 2 × (1 + N × G + F ) unknowns, where N is the number of firms, G is the number
of products, and F is the number of factors. This system of equations fully characterizes
the first-order response of all endogenous variables to any combination of productivity or
markup shocks. By solving this linear system using standard matrix algebra, we can con-
duct counterfactual analyses and evaluate the impact of various shocks on the economy’s
equilibrium outcomes.

6.3 Distance to the Pareto-Efficient Frontier

Using our model, we can characterize the distance to the Pareto-efficient frontier when in-
troducing distortions, allowing us to predict efficiency losses from counterfactual changes
in markups or other distortions:

Proposition 4. Under joint production, starting at an efficient equilibrium, up to second or-
der, and in response to the introduction of distortions, changes in the TFP are given by Domar-
weighted Harberger triangles:

L =
1
2

∑
ig

λigd log qigd logµig, (10)

where λig is the Domar weight of product g from firm i, qig is the quantity, and µig is the markup.

This result demonstrates that TFP changes resulting from the introduction of distor-
tions are solely determined by three statistics: Domar weights of each product; the mag-
nitude of the wedges; and the change in the quantity of the product. The quantity change
can be derived from sales and price changes given by our linear system, using the rela-
tionship d log q = d logλ−d log p. Since this system includes transformation elasticity σ, it
is generally affected by the elasticity value. To illustrate how joint production affects the
Distance to the Frontier, we provide analytical solutions for two examples.
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6.3.1 Horizontal Economy with Joint Production

We consider a horizontal economy similar to Hsieh and Klenow (2009) but with use joint
production technologies. This allows us to investigate within-firm markup heterogeneity
in the presence of production transformation constraints. In an economy with a repre-
sentative consumer (CES utility with elasticity θ), N firms each use a shared input L to
produce G products using CET technology (elasticity σ). Markups µig are heterogeneous
across products and firms.

Proposition 5. The distance to the frontier in the horizontal economy is given by:

L = −
1
2
θ
(
Varλ(d logµig) −

1
σ + 1

Eλ̄
{
Varsi(d logµig)

})
,

where Varλ(d logµig) and Varλi(d logµig) represent the Domar weighted variance of markup
change and the average of within-firm variances of markup changes, respectively. Vectors λ =
(λ11, λ12, . . . , λNG), λ̄ = (λ1, λ2, . . . , λN) are the vectors of firm-level revenue and cost Domar
weights with λi =

∑
g λig, and si = (λi1/λi, λi2/λi, . . . , λiG/λi).

Proposition 5 characterizes the distance to the frontier in a horizontal economy with
joint production and heterogeneous markups. The distance to the frontier comprises two
markup variances. The first term means the product-level markup’s Domer-weighted
variance gives the distance to the frontier. On the other hand, the second term, which is
related to joint production, means that the finite elasticity of transformation σ attenuates
the effect of the variance of the markup within the firm. As σ increases and approaches
infinity, the force of attenuation associated with joint production approaches zero. Con-
versely, as σ approaches zero (which implies Leontief production technology), the impor-
tance of within-firm markup dispersion decreases. We give this result in the following
formal corollary.

Corollary 3 (Limit Cases). The distance to the frontier simplifies in extreme cases of the elasticity
of transformation:

1. As σ→∞ (perfect substitution between products):

L = −
1
2
θVarλ(d logµig).
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2. As σ→ 0 (Leontief production technology):

L = −
1
2
θVarλ̄(Esi

(
d logµi

)
).

In the case of perfect substitutes, misallocation depends on the variance of markups
across all products. This term can be obtained by considering the product as an indepen-
dent firm and applying the results of Baqaee and Farhi (2020). Conversely, in the Leontief
case, only the variance of markups between firms is relevant. This is a consequence of the
law of total variance.

These results imply that, in the absence of within-firm markup dispersion, the term
related to joint production disappears regardless of the value of σ. However, this rea-
soning is specific to horizontal economies. This relationship easily breaks down in more
complex economic structures that include firm-to-firm networks, and σ remains essen-
tial even when markups within firms are homogeneous. To illustrate this, we consider a
simplified network example examined in Section 3.

6.3.2 Simplified Network Economy

Example 2. TFP Losses in a Simplified Network Economy: The second-order social loss
is given by:

L = −
1
4

(
σ

σ + 1

) (
d logµ

)2 . (11)

Despite no within-firm markup dispersion, σ appears in the loss function, demonstrat-
ing that network structure and transformation elasticity jointly determine the distance to
the frontier.

Welfare losses decrease as σ increases. We obtain an upper bound on social loss as
σ approaches infinity. When σ approaches zero (Leontief case), no misallocation occurs
regardless of markup size.

These findings emphasize the importance of considering network structures and trans-
formation elasticities when evaluating misallocation and efficiency in economies with
joint production, even without within-firm markup dispersion.
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7 Conclusion

This paper develops a theoretical framework to aggregate distortions in production net-
works with multiproduct firms. We assess their impact on aggregate TFP growth and de-
rive a nonparametric sufficient statistic to describe allocative efficiency with multiproduct
firms engaging in joint production.

We apply the framework to a comprehensive Chilean firm-to-firm transaction database.
Reallocation effects considering joint production explain 86% of the observed aggregate
TFP growth. Conversely, ignoring joint production leads to overestimating resource mis-
allocation.

We demonstrate the importance of considering joint production in understanding ag-
gregate TFP dynamics, especially during economic disruptions. The constraints multi-
product firms face in adjusting their product portfolios reduce reallocation within the
network that single-product models would predict.

Our analysis reveals that joint production, a previously understudied source of TFP
growth, can be of first-order importance. Our results demonstrate how aggregating gran-
ular microdata, through the lens of theory, can reduce the measure of our ignorance as
captured by aggregate TFP and provide new insights into the drivers of economic growth.
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Appendix for “Aggregating Distortions in Networks with

Multi-Product Firms”

A Additional Figures and Tables

A.1 Additional Empirical Results for Reduced-Form Evidence

In this appendix section, we present additional Figures and Table for the event study
analysis shown in Section 2.

Characteristics of Treatment Firms

Table A1 displays the characteristics of treated and control firms.

Table A1: Characteristics of Treatment Firms

Treatment Firms Control Firms

Number of firms 26,411 96,321

Number of workers 6 4

Number of products sold 16 10

Number of producers 107 119

Number of buyers 59 26

Annual revenue (million pesos) 186 101

Annual total intermediate purchases (million pesos) 107 59

Share of firms in manufacturing 0.21 0.24

Share of firms in Retail and wholesale 0.44 0.39

Share of firms in Services 0.22 0.21

Notes: This Table presents the characteristics of treated firms (those whose major product buyers experi-
enced lockdowns in March 2020) and control firms, showing values from February 2020, the month before
the shock. The rows for the number of workers, products sold, providers, buyers, revenue, and total in-
termediate purchases display the median of each statistic. The industry shares indicate the proportion of
firms within each group that belong to specific industries.
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Firms Sell Different Products to Distinct Sets of Buyers

We construct the following measure to characterize the heterogeneity from the interme-
diate inputs buyer perspective across products and within firms:

Si =
number of buyers of the main product of firm i

number of buyers of firm i
,

where the main product is the one that has the largest sales within firm i in 2018. Figure
A1 presents the distribution of this measure across firms.

Figure A1: Buyer heterogeneity across product within firm

Notes: Histogram of the number of buyers buying the main product of firm i / number of buyers in firm i
for a multiproduct firm. The main product is the product with the highest sales within that firm. Data are
from 2018.

If the buyers of the seller’s main product and its other products were the same, Si

would be one. Some mass exists at Si = 1 but for more than 50% of multiproduct firms;
however, buyers of the main product constitute less than 50% of the total buyer-firms
base. The fact that each product has a distinct set of buyers ensures that we can construct
a sample where the main product experiences a demand shock while the other products
do not.
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Event study excluding small firms

To address potential bias from financially constrained firms in our event study, we con-
duct a robustness check that focuses on larger firms, which we assume to be relatively
less financially constrained. We calculate total firm sales, including both network and
final consumer sales, for each year of the study period (2019-2021). We then isolate firms
above the 90th percentile of this distribution and replicate our event study analysis from
Section 2 using only this subset of larger firms. Figure A2 presents the results of this
robustness check.

Figure A2: The effects of demand shocks of the main product on the production of other
products within the firm: Robustness check

(a) Log Quantity (b) Log Price

Notes: Standard errors are clustered at the firm-county level, and the error bands represent 95% confidence
intervals. The X-axis represents the time to treat, with 0 denoting March 2020 when the main product
experienced the demand shock. Other values indicate the number of months before or after this event.

The event study results that exclude small firms are similar to the event study that
includes all firms, suggesting that financial constraints are not driving the results.

A3



Table A2: Aggregate firm-level statistics

Year Count Sales Wagebill Employment

2016 110,451 262,506 40,260 4,242,555

2017 114,480 277,960 43,691 4,349,248

2018 115,916 330,486 44,688 4,349,454

2019 116,706 336,386 47,299 4,425,780

2020 102,306 310,317 44,053 3,935,883

2021 105,651 376,220 51,642 4,166,838

2022 105,032 454,818 59,148 4,266,972

Notes: Count stands by the number of firms when sales and wage bills are yearly aggregates expressed in
millions of pesos. Employment represents the headcount of yearly workers included in the sample.

Distribution of the Number of Products

We use the 2018 data to describe the main features of the firm-to-firm trade patterns.
Of all firms, 75% produce multiple products, and these firms account for 98.94% of

intermediate input transaction value. Table A3 illustrates the distribution of products per
firm, weighted by firm-to-firm transaction values.
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Table A3: Distribution of Product Numbers

Percentile Number of products Number of products

(Unweighted) (Weighted by transaction value)

1% 1 1

5% 1 2

10% 1 4

25% 2 36

50% 7 475

75% 26 2,459

90% 119 32,195

95% 290 37,422

99% 1,253 62,372

Notes: The Table presents the distribution of product numbers for 2018. The left column shows the number
of products without weighting, while the right column displays the number of products weighted by the
intermediate product transaction volumes of the firms.
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B Downstream wedge

Table A4: The 30 most distorted products

Ranking Description

1 Insurance brokerage services
2 Other services
3 Passenger air transport services
4 Wholesale trade intermediary services
5 Electricity distribution and other related services
6 Investigation and security services
7 Airport services
8 Radio and open TV broadcast services
9 Wastewater treatment services
10 Online content services
11 Cleaning services
12 Liquefied Natural Gas
13 Employment services (placement and supply)
14 Postal and courier services
15 Tobacco
16 Paper and cardboard containers, paper or cardboard for recycling
17 Other IT services
18 News agency services
19 Margarine and similar preparations, other residues and waste from fats
20 General insurance
21 Other rubber products
22 Other auxiliary and complementary services for education services
23 Other goods or services not classified elsewhere
24 Long-distance passenger transport services
25 Gas distribution services and other related services
26 Some other product
27 Maritime passenger transport services
28 Research and development services
29 Repair and installation of machinery and equipment, except for the textile industry
30 Database software licensing services

Notes: For 2018, products are ranked using the downstream wedge medians for the product categories,
and products with the top 30 downstream markup sizes are reported.
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Table A5: The 30 Least distorted product

Ranking Description

1 Molybdenum minerals and their concentrates
2 Other non-metallic minerals
3 Gaseous natural gas
4 Crude oil
5 Mining works
6 Unrefined copper, ashes, residues and wastes of copper
7 Silver
8 Public administration and defense services; compulsory social security plans
9 Pet food
10 Bird food
11 Fish meal, crustacean, mollusk and other aquatic invertebrate meal
12 Ammonium nitrate
13 Lease services with or without purchase option
14 Bread
15 Veterinary services
16 Poultry meat and edible offal
17 Integrated telecommunications services (packs)
18 Fuel oil
19 Beers
20 Life insurance
21 Cakes, cakes and cookies
22 Hake
23 Consultancy and post services
24 Copper minerals and their concentrates
25 Public hospital services
26 Social and association services
27 Petroleum gas and other gaseous hydrocarbons, except natural gas
28 Fish oil
29 Mining exploration and evaluation services
30 Housing services

Notes: For 2018, products are ranked using the downstream wedge medians for the product categories,
and products with the top 30 downstream markup sizes are reported.
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C Additional Empirical Results for Growth accounting

In this section, we analyze the results obtained using the product-level markup estimation
methodology developed by Dhyne et al. (2022). We first delineate the markup estimation
procedure and subsequently perform growth accounting analysis employing Proposition
1, consistent with our main specification. Our findings indicate that the results remain
largely invariant between our baseline specification and the case accounting for markup
heterogeneity, which can be attributed to the fact that the majority of variation in cumula-
tive wedges stems from downstream markups rather than firms’ own markup decisions.

C.1 Detailed Methodology for Product-Level Markup Estimation

We estimate product-level markups following a production approach based on Dhyne
et al. (2022). In a joint production setup, firms use common inputs to produce a prod-
uct portfolio, meaning that some inputs can simultaneously be used to produce multiple
products. Dhyne et al. (2022) proposed a production function estimation method that is
like that of Ackerberg et al. (2015) yet is based on the production set of Diewert (1973).

A firm has a production possibilities set, V, that consists of a set of feasible inputs
x = (x1, ..., xM) and outputs of the product,q = (q1, ..., qG) . For any (qg, x) the transformation
function is defined as

q∗g = fg

(
qg, x

)
≡ max

{
qg|

(
qg, q−g, x

)
∈ V

}
To identify the unobserved marginal cost for each firm’s product, we rely on (variable)

cost minimization. Firms have N − 1 freely variable inputs and one fixed input, capital
(K), so the problem that a firm faces to minimize its variables cost to produce its output
vector q∗i given the input prices vector px =

(
px1, ..., pxM

)
and unobserved productivity for

products is ω = (ω1, ..., ωG).
Defining the Lagrangian multiplier of the cost minimization problem, mcg, as the

marginal cost of product g, the first order condition for every optimal input demand yield
is:

pm = mcg

∂ f (q∗
−g, x,K,ω)

∂xm
∀m = 1, ..,M,

It is possible to solve for the product g marginal cost as the expenditure on production
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input m divided by its output elasticity (βg
n) times product g production:

mcg =
pm

∂ f (q∗
−g,x,K,ω)

∂xm

=
pmx∗m
βg

mq∗g
,

Multiplying the marginal cost expression by 1
pg

, where pg is the product g price, the prod-
uct g markup is given by:

µg = β
g
m

pgq∗g
pmx∗m

,

We use control functions for the unobserved productivity terms (i.e., Ackerberg et al.
(2015)) to account for unobserved productivity with the difference of the need for instru-
ments for q−g; following Dhyne et al. (2022) we use lagged values of q−g. We assume that
firms use a Cobb-Douglas production function with three factors: (Capital K, Labor L,
and Materials M). A multi-product firm will produce physical units of product g using
the following production function:

log qgt = β
g
0 + β

g
k log kt + β

g
l log lt + β

g
m log m j

t + γ
g
−g log q−gt + ωgt

We pool together products at one digit (12 aggregate product categories) and per-
form production function estimations separately for each category following ACF using
a GMM estimator.

Product-level markup distribution is concentrated around 1, with a 1.22 median.
The cumulative wedge, Γ, is essential in constructing the multiproduct term, and it

is vital to understand whether this variation arises from downstream wedges or a prod-
uct’s markup. For this analysis, we use markup estimated by the production function
technique.
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Table A6: Variance decomposition of logΓ

Year Downstream wedge Own markup Covariance

2016 103.3% 0.6% -3.9%

2017 102.3% 0.7% -3.0%

2018 102.5% 0.6% -3.1%

2019 102.8% 0.6% -3.5%

2020 103.2% 0.7% -3.8%

2021 103.7% 0.6% -4.3%

2022 104.9% 0.7% -5.6%

Notes: We compute the variance decomposition of the logarithm of Γig ≡
λ̃ig

salesshareig
× µig for each year.

Var
(
logΓig

)
= Var

(
log

(
λ̃ig/salesshareig

))
+ Var

(
logµig

)
+ 2Cov

(
log

(
λ̃ig/salesshareig

)
, logµig

)
. The first term

on the right-hand side is the variance of downstream wedges. The second term is the variance of their own
markup, and the last is the covariance of both. We report the percentage of each term on the right-hand
side that explains the total variance.

Table A6 presents the variance decomposition of Γ by year. The results show that most
variation in Γ stems from downstream distortions, with a minimal contribution from the
product’s markup. This finding is unsurprising, given that downstream distortions repre-
sent cumulative wedges throughout the downstream supply chain of the entire economy.
In contrast, µ represents a product’s own markup. This result implies that the down-
stream distortions faced by each pair of firms and products are highly heterogeneous
when considering product- and firm-level production networks.

When we apply Proposition 1 to the data, the cumulative wedges (the multiproduct
term using Γ as input) will be less sensitive to markup estimates. In our application, we
show the two methods produce almost identical aggregate implications.
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Figure A3: Cumulative TFP Decomposition with Multi-Product Term
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Notes: This Figure shows the cumulative log change calculated by repeatedly applying the equation from
Proposition 1 each year. Technology (residual) is calculated by subtracting allocative efficiency from TFP.
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Figure A4: Cumulative TFP growth Decomposition with multiproduct term
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Notes: This Figure decomposes the cumulative change in allocative efficiency in Figure A3 into single-
product and multi-product terms.

D Proofs

Proof of Example 1 in subsection 3.6:

Proof. First, we compute relative network distortions:

γig ≡
Γig

Γi
,

where the average distortion of firm i is defined as: Γi ≡
∑

g λ̃ig/
∑

g

(
salesshareig/µig

)
. So Γ1

is
Γ1 ≡

1
1
µ +

1
µ2

2 =
2

1
µ

(
1 + 1

µ

) .
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and

γ11 =
µ2

2
1
µ

(
1+ 1

µ

) =
(
µ + 1

)
2

,

γ12 =
µ
2

1
µ

(
1+ 1

µ

) =
µ 1
µ

(
1 + 1

µ

)
2

=

(
1 + 1

µ

)
2

,

Thus,
1
γ11
=

2
1+µ
µ

= 2
1(

µ + 1
) ,

1
γ12
=

2
1+µ
µ

= 2
µ

1 + µ
.

Substitute them into covariance:

Covsi

(
d log pi,

1
γi

)
= Cov[ 1

2 ,
1
2 ]


 −ϵ0

 ,
 2 1

(µ+1)
2 µ

(µ+1)


 ,

=

(
µ − 1

2
(
1 + µ

)) ϵ.
Next, we compute the endogenous response of Labor share d logΛ to the markup shock.
From the factor share identity, we know

ΛL = 1 −
1
2

(
1 −

1
µ12

)
−

1
2

(
1 −

1
µ21

)
−

1
2

1
µ21

(
1 −

1
µ11

)
,

Evaluating the markup other than µ21 with µ and taking the logarithm, we have

logΛ = log
1
µ
+ log

1
2

(
1 +

1
µ21

)
.

Taking the derivative with respect to logµ21,

d logΛ
d logµ21

=
d log

(
1
µ

1
2

(
1 + 1

µ21

))
dµ21

dµ21

d logµ21
,

=
−

1
µ21

1
2

(
1 + 1

µ21

) ,
A13



=
−

1
µ21

1+µ
µ

.

Evaluating at µ11 = µ gives
d logΛ

d logµ21
= −

1
µ + 1

.

And ∑
i

λ̃id logµi =
1
2

(−ϵ).

Therefore,

−d logΛ −
∑

i

λ̃id logµi =

(
µ − 1

2
(
1 + µ

)) ϵ.
□

Proof of Example 2 in subsection 3.6:

Proof. Pick product 2 to be a reference product for firm 1. Then, we know

d log p11/p12 = d logµ11/µ12 +
1
σ

d log y11/y12.

Using d logλ = d log p + d log y

d log p11/p12 =
(
σ

σ + 1

)
d logµ11/µ12 +

1
σ + 1

d logλ11/λ12,

where d logµ11 = 0, d logµ12 = 0, and d logµ21 = 0. From the Cobb-Douglas assumption
we know d logλ11/λ12 = −ϵ. Thus we have

d log p11/p12 = −
( 1
σ + 1

)
ϵ.

d log TFP = Cov[ 1
2 ,

1
2 ]


 d log p11

d log p12

 ,
 1
γ1

1
γ2


 − d logΛ −

∑
i

λ̃id logµi,

= Cov[ 1
2 ,

1
2 ]


 d log p11/p12

d log p12/p12

 ,
 2 1

1+µ

2 µ

(µ+1)


 +

(
µ − 1

2
(
1 + µ

)) ϵ,
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= Cov[ 1
2 ,

1
2 ]


 −

(
1
σ+1

)
ϵ

0

 ,
 2 1

1+µ

2 µ

(µ+1)


 +

(
µ − 1

2
(
1 + µ

)) ϵ,
=

(
σ

σ + 1

) ( µ − 1
2
(
1 + µ

)) ϵ.
□

Proof of Proposition 1

Lemma 1. The price equation with multi-product firms for some reference product r of firm i:

yirmcir

C
(
yi, p

)d log pir = − d log Ai/µi +
∑

j,k

p jgxi, jg′

C
(
yi, p

)d log p jg′ +
∑

f

w f li f

C
(
yi, p

)d log w f︸                                                  ︷︷                                                  ︸
intermediate and factorprice

+
∑
g,r

(
−

yigmcig

C
(
yi, p

)) d log pig︸                        ︷︷                        ︸
other product from the same firm

,

Proof. By definition, we know

Ci
(
qi,pi

)
=

∑
g

qigmcig.

Total derivative:

RHS =
∑

g

∂ log
(∑

qigmcig

)
∂ log yi

yid log yi +
∑

i

∂ log
(∑

qigmcig

)
∂ log mcig

mcigd log mcig,

=
∑

g

qigmcig

Ci
(
qi,pi

)d log qig +
∑

g

qigmcig

Ci
(
qi,pi

)d log mcig.

and

LHS = −d log Ai +
∑
j,g′

p jg′xi, jg′

Ci
(
qi,pi

)d log p jg′ +
∑

f

w f li, f

Ci
(
qi,pi

)d log w f +
∑

g

qigmcig

Ci
(
qi,pi

)d log qig.
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Hence,∑
g

yigmcig

Ci
(
qi,pi

)d log mcig = −d log Ai +
∑
j,g′

p jg′xi, jg′

Ci
(
qi,pi

)d log p jg′ +
∑

f

w f Li f

Ci
(
qi,pi

)d log w f . (12)

□

Cost minimization with joint production function:

Pick some reference product r of firm i. Following Hall (1973), as a concequence of cost
minimization, the following condition holds:

mcig

mcir
=
∂FQ

i

(
q
)
/∂qig

∂FQ
i

(
q
)
/∂qir

,

By taking the log difference and adjusting it with the markup, we get the following
formula:

d log
(
pig/pir

)
= d log

(
µig/µir

)
+ d log

(
∂FQ (

q
)
/∂qig

∂FQ
(
q
)
/∂qir

)
. (13)

This pins down the equilibrium prices with equation 11. For later proof, we define the
RHS of the equation 13 as Θig.

d log pig/pir = Θig. (14)

Then, we proceed to the main proof.

Proof. From Lemma 1 We know for one reference product r:

qirmcir

Ci
(
qi,pi

)d log mcir = − d log Ai +
∑

j,p

p jpx jp

Ci
(
qi,pi

)d log p jp +
∑

f

w f Li f

Ci
(
qi,pi

)d log w f +
∑
g,r

(
−

qigmcig

Ci
(
qi,pi

) ) d log mcig,

qirmcir

Ci
(
qi,pi

)d log pir = − d log Ai + d logµi +
∑

j,p

p jpxi, jp

Ci
(
qi,pi

)d log p jp +
∑

f

w f Li f

Ci
(
qi,pi

)d log w f

+
∑
g,r

(
−

qigmcig

Ci
(
qi,pi

) ) d log pig.

From equation 14, we have
d log pig/pir = Θig.

Combining 12 with 14 yields
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qirmcir

Ci
(
qi,pi

)d log pir = −d log Ai +
∑

g

qigmcig

Ci
(
qi,pi

)d logµig +
∑

j,p

p jpx jp

Ci
(
qi,pi

)d log p jp +
∑

f

w f li f

Ci
(
qi,pi

)d log w f

+
∑(
−

qigmcig

Ci
(
qi,pi

) ) d log pig,

qirmcir

Ci
(
qi,pi

)d log pir = −d log Ai + d logµi +
∑

j,p

Ω̃ig, jpd log p jp +
∑

f

Ω̃ig, f d log w f +
∑
g,r

(
−

qigmcig

Ci
(
qi,pi

) ) [d log pir + Θig

]
,

d log pir = −d log Ai + d logµi +
∑

j,p

Ω̃ig, jpd log p jp +
∑

f

Ω̃ig, f d log w f +
∑
g,r

(
−

qigmcig

Ci
(
qi,pi

) )Θig.

Because Θig = 0 if g is n reference product, the price equations could be written as

d log pig = −d log Ai + d logµi +
∑
j,g′
Ω̃ig, jg′d log p jg′ +

∑
f

Ω̃ig, f d log w f +

Ii(g) −
∑
g,r

(
qigmcig

Ci
(
qi,pi

))Θig.

In vector notation

d log p = (I − Ω̃NG×NG)−1
{
−d log ANG×1 + d logµNG×1 + Ω̃NG×Ff d log w + (1 − C) ◦ΘNG×1

}
,

where ◦ represents the Hadamard product and and C is a vector of NG × 1, with the
following Ci common elements for firm i ∈ N ,

Ci =
∑
g,r

(
qigmcig

C
(
qi,pi

)) .
We know

d log Y = −b′d log p.

d log Y = −b′Ψ̃NG×NG
{
−d log A + d logµ + Ω̃ f d log w + (1 − C) ◦ΘNG×1

}
,

= −λ̃′
{
−d log A + d logµ + Ω̃ f d log w + (1 − C) ◦ΘNG×1

}
.

subtracting
∑

f Λ̃ f d log L f from both sides yields
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d log TFP =
∑
i∈N

λ̃id log Ai −

∑
i∈N

λ̃id logµi −

∑
f∈F

Λ̃ f d logΛ f ,

−

∑
i

∑
g∈G

λ̃igd log pig/pir −

∑
g,r

qigmcig

Ci
(
qi,pi

) λ̃id log pig/pir

 .
∑

g

λ̃igd log pig/pir −

∑
g,r

qigmcig

Ci
(
y, p

) λ̃id log pig/pir

 = λ̃i

∑
g∈G

sigd log pig/pir −

∑
g,r

cigd log pig/pir

 ,
= λ̃i

∑
g∈G

sigd log pig/pir −

∑
g∈G

cigd log pig/pir

 ,
= λ̃i

∑
g∈G

(
sig − cig

)
d log pig

 ,
= λ̃i

∑
g∈G

sig −

qigmcig

C(y,p)
sig

sig

 d log pig

 ,
= λ̃i

∑
g∈G

(
sig −

1
γig

sig

)
d log pig

 ,
= λ̃i

(
Esi

[
d log pi

]
Esi

[
1
γi

]
− Esi

[
d log pi,

1
γi

])
,

= −λ̃iCovsi

(
d log pi,

1
γi

)
.

where cig =
qigmcig

C(qi,pi) .
□

Proof of Proposition 4

Proof. From the resource constraint,

qig = yig +
∑
j∈N

x jig.
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d log yig =
qig

yig
d log qig −

∑
j

x jig

yig
d log x jig.

From the cost minimization of joint production we know∑
g

qigmcigd log qig =
∑

jp

xi, jpp jpd log xi, jp +
∑

f

w f xi, f d log Li f .

∑
jp

xi, jpp jp

GDP
d log xi, jp =

∑
g

1
µig

qigpig

GDP
d log qig −

∑
f

w f xi, f

GDP
d log Li f .

By cost minimization assumption,

d log Y =
∑

ig

pigyig

GDP
d log yig −

∑
f

w f xi, f

qirmcig
d log L f ,

=
∑

ig

pigyig

GDP

 qir

yig
d log qig −

∑
j

x jig

yig
d log x jig

 −∑
f

w f L f

GDP
d log L f ,

=
∑

ig

pigyig

GDP
qir

yig
d log qig −

∑
ig

∑
j

pigyig

GDP
x jig

yig
d log x jig −

∑
f

w f L f

GDP
d log L f ,

=
∑

ig

pigqig

GDP
d log qig −

∑
ig

1
µig

pigqig

GDP
d log qig +

∑
i f

w f xi, f

GDP
d log Li f −

∑
f

w f L f

GDP
d log L f ,

=
∑

ig

λig

(
1 − µ−1

ig

)
d log qig.

Therefore,

∂ log Y
∂ logµig′

=
∑

ig

λig

(
1 − µ−1

ig

) d log qig

d logµ jg′
,

∂ log Y
∂ logµig∂ logµ jg′

=
∑
ig, jg′

λigd logµig
d log qig

d logµ jg′
.

∂ log Y
∂ logµig∂ logµ jg′

=
∑

ig

∑
jg′
λigd logµigd logµ jg′

d log qig

d logµ jg′
,

=
∑

ig

λigd log qigd logµig.
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□

Proof of Proposition 5

Proof. Define the firm-level Domar weight:

λi =
∑

g

λig.

Let d logµig denote the exogenous change in the markup for product g of firm i. The
aggregate markup change for firm i is:

d logµi =
1
λi

∑
g

λig d logµig.

The weighted average markup change is:

¯d logµ =
∑

i

λi d logµi =
∑

i

∑
g

λig d logµig.

Let d log pig be the change in the price of product g by firm i, and let d log w be the change
in the wage rate.

The aggregate price index change is:

d log p =
∑

i

∑
g

λig d log pig.

The price change for product g of firm i is:

d log pig = d logµi + d log w +
κ
λi

(
d logµig − d logµi

)
,

where
κ =

σ
σ + 1

.

Using the zero-profit condition and labor market clearing, we have:

d log w = − ¯d logµ.
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Therefore, the aggregate price index change simplifies to:

d log p =
∑

i

λi d logµi − ¯d logµ = 0,

so d log p = 0.
The change in the Domar weight of product g is:

d logλig = (1 − θ) d log pig.

The welfare change is:

L =
1
2

∑
i

∑
g

λig d log qig d logµig = −
1
2
θ
∑

i

∑
g

λig d log pig d logµig.

Our goal is to express L in terms of d logµig. Using d log w = − ¯d logµ, we have:

d log pig = (d logµi − ¯d logµ) +
κ
λi

(
d logµig − d logµi

)
.

Let
˜d logµi = d logµi − ¯d logµ,

and
˜d logµig = d logµig − d logµi,

then:
d log pig = ˜d logµi +

κ
λi

˜d logµig.

Substituting into the welfare change:

L = −
1
2
θ
∑

i

∑
g

λig

(
˜d logµi +

κ
λi

˜d logµig

)
d logµig.

This simplifies to:

L = −
1
2
θ

∑
i

λi ˜d logµid logµi + κ
∑

i

1
λi

∑
g

λig ˜d logµ
2
ig

 .
Given the definitions of total variance and conditional variance, the welfare change
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becomes:

L = −
1
2
θ

Varλ̄(d logµi) +
σ

σ + 1

∑
i

λi Varsi(d logµig)

 .
From the law of total variance we know

Varλ(d logµig) = Varλ(d logµi) +
∑

i

λi Varsi(d logµig).

Using this, we obtain

L = −
1
2
θ

Varλ(d logµig) −
1

σ + 1

∑
i

λi Varsi(d logµig)

 .
□
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