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Abstract

This paper investigates how production networks shape firms’ R&D decisions and the

resulting aggregate inefficiencies. We develop a dynamic model in which firms form

supplier relationships through an exogenous yet persistent matching process and rely on

those links to introduce new products. The model features two sources of misallocation:

market-power distortions and a network-formation externality whereby firms fail to

internalize that their R&D makes them more attractive trading partners, improving

match quality for all firms in the economy. We estimate the model using Japanese

firm-to-firm transaction and patent data and show that the first-best allocation lies close

to the decentralized outcome. Market-power corrections raise R&D incentives for older

firms by relieving double marginalization along long supply chains. Internalizing the

network-formation externality instead tilts R&D toward younger firms that expand

their supplier base most rapidly. These opposing forces offset each other, leaving the

planner’s allocation near the observed one.

‗
We thank Ariel Burstein, David Baqaee, and Hugo Hopenhayn for excellent guidance. We also thank

Andy Atkeson, Oleg Itskhoki, Lee Ohanian, Jon Vogel, Pablo Fajgelbaum, Joao Guerreiro, Gary Hansen,

Pierre-Olivier Weill and seminar participants at UCLA for valuable comments. This research has been

conducted as a part of the TDB-CAREE project. We appreciate Teikoku Databank for granting us access to

their database.

1



1 Introduction

Firms’ research and development (R&D) decisions are fundamentally shaped by their

position within production networks. When Toyota develops new automotive models, for

instance, it does not innovate in isolation but leverages an established web of engine and

chassis suppliers. This interconnectedness means that a firm’s R&D choices are intrinsically

linked to its trading partners.

While the literature has extensively studied how innovation spreads through knowledge

networks (Liu and Ma, 2023), the channel through which the production network itself shapes

R&D incentives remains less explored. Understanding this channel and the inefficiencies

that may arise is crucial for optimal innovation policy. This paper investigates these

dynamics by developing a model that captures the interplay between production networks

and R&D decisions and then quantifies the resulting welfare effects.

Motivated by empirical patterns from a unique Japanese dataset, we build a dynamic

model with three core features. First, firms build networks of suppliers over their lifecycle

through an exogenous matching process that combines random matching with relationship

persistence. This process generates an age-dependent network structure where older firms

accumulate larger and more valuable supplier networks. Second, firms invest in R&D to

create new product varieties. Third, and most critically, successful innovation leverages

existing network connections: new products are produced using established suppliers and

sold through existing customer relationships.

This framework reveals two primary sources of R&D misallocation. The first stems

from standard market power distortions: markups and double marginalization reduce

private returns to innovation, particularly for older firms embedded in long supply chains.

The second represents our novel contribution: a network-formation externality. When firms

innovate, they become more productive and desirable trading partners, improving the

expected quality of potential matches for all other firms in the market. However, innovating

firms are not compensated for this contribution and fail to internalize the surplus that

accrues to their suppliers when relationships form.

Our quantitative analysis shows that the social planner’s optimal R&D allocation is

nearly identical to the decentralized equilibrium allocation. This occurs because two forces

create counteracting effects on older firms’ R&D incentives. The first force arises from

correcting market power distortions. Eliminating markups and double marginalization

boosts the relative value of older firms in long supply chains, pushing R&D resources

toward them. The second force comes from internalizing the network-formation externality.

Since this externality is most significant for younger firms rapidly building their networks,
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internalizing it pushes R&D resources away from older firms. These forces almost perfectly

offset each other.

Related Literature

This paper connects the literature on the macroeconomic importance of networks, as

typified by Acemoglu and Carvalho (2012), to the literature on R&D as the creation of new

goods, for example, Romer (1990) and Klette and Kortum (2004). Our primary contribution

is to integrate these two strands, showing how the transactional structure of a production

network shapes R&D incentives and creates a novel set of allocative inefficiencies.

The production networks literature has demonstrated that network structure serves

as a potent amplifier of economic shocks while creating misallocation in factor markets.

Research by Liu (2019), Baqaee and Farhi (2020), Bigio and La’O (2020), Baqaee et al. (2023),

and Osotimehin and Popov (2023) has shown how market power and markup heterogeneity,

transmitted through input-output linkages, generate substantial aggregate welfare losses.

While our analysis of market power distortions builds directly on these insights, we push

the boundaries of this mechanism beyond static labor allocation to encompass the allocation

of R&D resources.

A growing body of work examines the endogenous evolution of these networks, focusing

on link formation through partner search and matching to explain the economy’s structure

(see Oberfield (2018), Arkolakis et al. (2023), Eaton et al. (2022), Huneeus (2018), Bernard

et al. (2022), Acemoglu and Azar (2020)). Our model shares this dynamic perspective,

with network connections evolving as firms mature, a pattern also explored by Aekka and

Gaurav (2023) and Asai and January (2025). Where we differ is in shifting the central margin

from partner search to R&D investment, thereby identifying a previously unrecognized

externality: the network-formation externality.

This externality provides a new perspective on R&D misallocation, distinct from

inefficiencies arising through "knowledge networks" studied by Liu and Ma (2023), Cai

and Li (2019), and Cai and Tian (2021). Our mechanism operates through the production

network: the inefficiency stems not from imitation but from innovators’ inability to capture

the value they create by becoming better trading partners. This differs from other R&D

misallocation sources, including crowding out (Acemoglu et al. (2018)) or innovation

spillovers (Aghion et al. (2023), Ayerst (2023)). The interaction between our externality and

market power distortions produces our main result: two opposing forces that largely offset

each other.
1
.

1
Empirical work using inter-firm network data (Boehm et al. (2019), Bernard et al. (2022), Bernard et al.

(2019), Carvalho et al. (2020), Bai et al. (2023), Daisuke (2017)) has focused on short-run shock propagation.
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The rest of the paper is organized as follows. Section 2 presents the data and empirical

findings on the relationship between production networks, firm age, and R&D. Section 3

develops a dynamic model of production networks and R&D based on these empirical

findings. Section 4 analyzes the misallocation of R&D workers in the decentralized

equilibrium compared to the social planner’s solution. Section 5 presents a quantitative

exercise, estimating the model parameters and comparing the model’s predictions with

the data. Finally, Section 6 concludes the paper.

2 Motivating Facts on Production Networks and Innovation

Using a dataset of B2B transactions and patents as a proxy for R&D, we document facts

that govern the dynamics of supply chains. Older firms use intermediate goods more

intensively and maintain wider networks with more buyers and suppliers. These firms are

also more interconnected with other older firms. Furthermore, we find that an exogenous

increase in the R&D of a trading partner, as measured by patents, promotes R&D in the

focal firm. We build a dynamic model in Section 3 based on these empirical regularities.

2.1 Data Sources

Our analysis relies on three main datasets: the Teikoku Databank (TDB) from Japan, the

IIP Patent Database, and the OECD Triadic Patent Families (TPF) database.

First, the Teikoku Databank is a private credit research company that gathers information

while preparing credit research reports on potential suppliers and buyers. This information

includes a series of corporate-level characteristics along with the identities of the companies’

suppliers and buyers. Notably, this database is not limited to publicly listed companies,

offering broader coverage than databases like Compustat.

The second dataset is the IIP Patent Database, developed for patent statistical analysis

using standardized data from the Patent Office. As the IIP Patent Database lacks corporate

information, it is linked with the NISTEP database, which connects patent data to company

names and identification numbers. Identification numbers from NISTEP then allow us to

merge the IIP Patent Database with the TDB. For firms without identification numbers, we

integrate the databases as much as possible using addresses and names.

The third dataset is the OECD Triadic Patent Families (TPF) database, which combines

patent applications filed with the European Patent Office (EPO), the Japan Patent Office

Our dataset, combining firm-level linkages with patent records, provides the first evidence on long-term

supply chain and innovation dynamics.
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(JPO), and the United States Patent and Trademark Office (USPTO) into patent families

based on common priority applications. The primary data source for the TPF is the

EPO’s Worldwide Patent Statistics Database, which provides harmonized and comparable

information on patents from the EPO, JPO, and USPTO. We use information on the IPC

(four digits), the year of application (earliest filing date at the Japan Patent Office), and the

nationality of the applicant for each patent.

2.2 Relationship between supply chain and firm age

We explore the empirical regularities that govern the time evolution and cross-sectional

distribution of production networks to model the inter-firm matching process. The main

finding is that the number of suppliers and buyers increases with firm age, but the rate of

increase diminishes as firms grow older. In the cross-section, older firms are more likely to

have older trading partners as well, mainly because trading relationships are sticky.

2.2.1 Age-dependent network relationships

We begin by analyzing the cross-sectional relationship between firm age and the number

of trading partners. Figure 1a shows local linear regressions of the numbers of suppliers

and buyers on firm age. Both series increase monotonically with age. After a steep increase

in the first half of the life cycle, the pattern transitions to a more gradual, roughly log-linear

rise. Figure 1b plots the corresponding growth rates, confirming that partner growth is

high early in the life cycle and converges to a constant value. The number of suppliers

tends to slightly exceed the number of buyers, but the slopes are not markedly different.

2.2.2 Positive age assortative matching by age in cross-section

Next, we turn to the features of trading partners conditional on age. Figure 2a plots trading

partners’ ages against firms’ own ages. Older firms tend to match with older partners,

indicating positive assortative matching by age in the cross-section.

To understand this assortative matching, we consider existing links (stocks) and the

formation or withdrawal of business relationships (flows). We first examine the age

heterogeneity in current-period matches within the flows. Figure 2b plots a local linear

regression of partners’ ages on firms’ own ages. The flows exhibit only one to two years of

heterogeneity, considerably smaller than the heterogeneity in the cross-section. Next, to

examine the age dependence of link termination, Figure 3 plots the survival of each link as

a function of the number of trading years between firms for each supplier and buyer age
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Figure 1: Lifecycle of production networks.

Notes: The figure shows local linear regression estimates relating firms’ connections to firm age with

controls. The sample covers 1998–2019. The control terms include prefecture, industry, and year fixed effects.

The two lines represent the supplier and buyer sides as separate regressions. Shaded areas indicate the 95

percent confidence intervals.

quartile group. The probability that a link breaks decreases with the number of transaction

years, but there is little significant heterogeneity across seller and buyer age groups.

Why does age assortativity arise, even though the formation of new links is independent

of firm age? The reason is that when business relationships are sticky, firms and their past

counterparts age together. According to Figure 3, it takes more than 10 years for 90% of

business relationships to dissolve. This high degree of stickiness generates the observed

positive age assortativity of matching.

Finally, Figure 4 presents local linear regressions relating R&D activity to firm age. Both

proxy measures of R&D activity increase monotonically with age.

2.3 Firm-Level Production Networks and R&D

In this section, we use an integrated database that combines firm-level transaction data

from TDB with patent information from the IIP Patent Database maintained by the JPO

to examine how the R&D activity of network-connected firms affects a focal firm’s own

innovation outcomes.

While our formulation builds on Acemoglu et al. (2015) and Liu and Ma (2023), it differs

in two key respects. First, instead of aggregated industry- or technology-class variables,

we exploit firm-level transaction links alongside patent citation relationships. Second,

whereas Liu and Ma (2023) document technological spillovers and Acemoglu et al. (2015)
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(a) Partners’ age by firm age
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(b) Partners’ age in flows by firm age

Figure 2: Positive age assortativity.

Notes: The figure shows local linear regression estimates relating trading partners’ ages to firm age with

controls. The sample covers 1998–2019. The control terms include prefecture, industry, and year fixed effects.

The two lines represent the supplier and buyer sides as separate regressions. Shaded areas indicate the 95

percent confidence intervals.

study foreign patent shocks transmitted through production networks, our data allow us

to separate transactional and technological ties at the firm level. Appendix Section A.1

documents that the two networks still overlap, even when observed at the firm level.

We estimate regressions on firm-level data from 1994 to 2019, measuring each firm’s

R&D activity by the number of patent applications and identifying production-network

connections through the TDB database. Our baseline specification is

log |Patents|𝑖 ,𝑡 = 𝛽1 log

|Sellers’ Patents|𝑖 ,𝑡
|Sellers|𝑖 ,𝑡

+ 𝛽2 log

��
Buyers’ Patents

��
𝑖 ,𝑡��

Buyers

��
𝑖 ,𝑡

+ controls𝑖 ,𝑡 + 𝜀𝑖 ,𝑡 ,

where the controls include firm and year fixed effects. Here, |Sellers’ Patents|𝑖 ,𝑡 (

��
Buyers’ Patents

��
𝑖 ,𝑡

)

denotes the total number of patent applications filed in year 𝑡 by all sellers (buyers) of firm

𝑖. The ratios |Sellers’ Patents|𝑖 ,𝑡 /|Sellers|𝑖 ,𝑡 and

��
Buyers’ Patents

��
𝑖 ,𝑡
/
��
Buyers

��
𝑖 ,𝑡

therefore

capture the average R&D activity of a firm’s trading partners. To mitigate endogeneity

concerns, we construct instrumental variables based on exposure to foreign patents:

IV for

|Sellers’ Patents|𝑖 ,𝑡
|Sellers|𝑖 ,𝑡

=

∑
𝑐

|Sellers’ Patents|𝑖 ,𝑐,𝑡−1

|Sellers’ Patents|𝑖 ,𝑡−1

×
��
Foreign Patents

��
𝑐,𝑡−1

,

IV for

��
Buyers’ Patents

��
𝑖 ,𝑡��

Buyers

��
𝑖 ,𝑡

=

∑
𝑐

��
Buyers’ Patents

��
𝑖 ,𝑐,𝑡−1��

Buyers’ Patents

��
𝑖 ,𝑡−1

×
��
Foreign Patents

��
𝑐,𝑡−1

.
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(a) Survival links by seller’s age
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(b) Survival links by buyer’s age

Figure 3: Survival links.

Notes: This figure plots the duration of business relationships between firms. To mitigate bias from sample

observability, the sample is restricted to connections where (1) the connection is first observed more than one

year after the period in which both firms were first observed and (2) the connection is no longer observed

more than one year before the period in which either firm was last observed. The figure on the left classifies

business relationships by the age quartiles of supplier firms. The right figure classifies business relationships

by the age quartiles of buyer firms.

Here,

��
Foreign Patents

��
𝑐,𝑡−1

is the number of triadic patents in class 𝑐 filed at time 𝑡 − 1

at the Japan Patent Office by foreign firms, after excluding Japanese applicants. Triadic

patents capture global technology trends rather than domestic demand shocks, yielding

exogenous shifters for Japanese firms. By observing firm-level technology exposure di-

rectly, we can construct the above instruments without sector-level aggregation. The weights

|Sellers’ Patents|𝑖 ,𝑐,𝑡−1
/|Sellers’ Patents|𝑖 ,𝑡−1

and

��
Buyers’ Patents

��
𝑖 ,𝑐,𝑡−1

/
��
Buyers’ Patents

��
𝑖 ,𝑡−1

capture the exposure of each firm to patent class 𝑐 through its sellers and buyers, respec-

tively.

Table 1 reports ordinary least squares (OLS) and instrumental variable (IV) estimates.

In both sets of regressions the coefficients on the average number of sellers’ and buyers’

patent applications are positive and statistically significant, indicating that a firm’s R&D

activity increases with the innovation intensity of its trading partners. The IV estimates in

columns (4)–(6) are larger in magnitude than the corresponding OLS estimates, consistent

with downward bias in the naive specification.

To verify that the results stem from production-network mechanisms rather than direct

technological spillovers, Table 2 shows that the coefficients remain sizable and significant

even when we exclude patents that cite the applicant’s buyers or sellers. This pattern

supports the interpretation that production relationships, rather than shared patent classes,

drive the observed spillovers.
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Figure 4: R&D and age.

Notes: The figure shows local linear regression estimates relating R&D measures to firm age with controls.

The sample covers 1998–2019. The control terms include prefecture, industry, and year fixed effects for the

firm and its clients. Shaded areas indicate the 95 percent confidence intervals.

Table 2: Regression Results (excluding patenting relationships)

(1) (2) (3) (4) (5) (6)

log

|Sellers’ Patents|𝑖 ,𝑡
|Sellers|𝑖 ,𝑡 0.018*** 0.017*** 0.049** 0.043**

(0.003) (0.003) (0.019) (0.019)

log

|Buyers. Patents|𝑖 ,𝑡
|Buyers|𝑖 ,𝑡

0.020*** 0.019*** 0.081*** 0.079***

(0.003) (0.003) (0.023) (0.023)

year fixed effect Yes Yes Yes Yes Yes Yes

firm fixed effect Yes Yes Yes Yes Yes Yes

Fstat 805.3 690.5 339.0

Observations 51,338 51,338 51,338 51,338 51,338 51,338

Standard errors in parentheses

* p<0.10, ** p<0.05, *** p<0.01

Notes: Standard errors are clustered at the industry × year level.

In sum, we provide novel evidence on the impact of production networks on firm

innovation using a unique integrated database of firm-level transactions and patent

data. Firms innovate more when their suppliers and buyers do so, even after addressing
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Table 1: Regression Results

(1) (2) (3) (4) (5) (6)

log

|Sellers’ Patents|𝑖 ,𝑡
|Sellers|𝑖 ,𝑡 0.020*** 0.019*** 0.068*** 0.062***

(0.003) (0.003) (0.018) (0.018)

log

|Buyers. Patents|𝑖 ,𝑡
|Buyers|𝑖 ,𝑡

0.022*** 0.020*** 0.077*** 0.073***

(0.003) (0.003) (0.021) (0.021)

year fixed effect Yes Yes Yes Yes Yes Yes

firm fixed effect Yes Yes Yes Yes Yes Yes

Fstat 840.4 759.8 373.5

Observations 53,553 53,553 53,553 53,553 53,553 53,553

Standard errors in parentheses

* p<0.10, ** p<0.05, *** p<0.01

Notes: Standard errors are clustered at the industry × year level.

endogeneity with instrumental variables. These findings indicate that production networks

shape innovation incentives above and beyond technological knowledge spillovers.

3 A Model of Production Networks and R&D

Building on the empirical findings from Section 2, we develop a model that captures the

interaction between production networks and innovation. Specifically, we build on Klette

and Kortum (2004), a canonical model of innovation and firm dynamics, and introduce a

firm-to-firm matching process replicating the age-dependent production network pattern

observed in the data. Our original and most critical assumption is that successful R&D can

use existing production networks to create and sell new goods, consistent with the positive

impact of trading partners’ R&D on a firm’s own R&D found in the data.

3.1 Settings

A unit measure of infinitely lived households supplies a unit measure of production

workers, R&D workers, and entrepreneurs
2
. Households have preferences over a final

consumption good,𝑈0 =
∫ ∞

0

exp

(
−𝜌𝑡

)
log𝑌 (𝑡) 𝑑𝑡, where 𝜌 > 0 is the discount rate and𝑌(𝑡)

2
Fixing the supply of skilled labor abstracts from the underinvestment that would arise if other workers

could perform R&D or if output were directly convertible into R&D. Recent work on R&D misallocation

(Aghion et al., 2023; Liu and Ma, 2023) adopts the same assumption.
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is consumption. The budget constraint is
¤𝐴(𝑡) ≤ 𝑟(𝑡)𝐴(𝑡) + 𝑤(𝑡) + 𝑤𝐻(𝑡) + 𝑤𝐸(𝑡) − 𝑃(𝑡)𝑌(𝑡)

with the standard no-Ponzi condition, where 𝐴(𝑡) is the asset position, 𝑟(𝑡) is the interest

rate, and 𝑤(𝑡), 𝑤𝐻(𝑡), and 𝑤𝐸(𝑡) denote wages for each type of worker. We set nominal

GDP as the numeraire. The Euler equation then implies 𝑟(𝑡) = 𝜌. In what follows, we focus

on the stationary equilibrium and drop time subscripts when no confusion arises.

Products, Firms, and Production Networks

There is a continuum of intermediate goods, indexed by 𝜔 ∈ Ω(𝑡). The measure of inter-

mediate goods evolves through the creation of new varieties and exit. Each intermediate

good 𝜔 is produced by a monopolist, and a given firm may own multiple product lines and

operate several goods simultaneously. Consider a firm 𝑓 ∈ ℱ that owns product line 𝜔.

Let 𝑛( 𝑓 ) denote the number of product lines owned by firm 𝑓 . We drop the firm subscript

when no confusion arises. Denote by 𝒮(𝜔) ⊂ Ω the set of products used as inputs for

good 𝜔. Although buyers can be inferred from the inverse mapping of 𝒮(·), for notational

simplicity we write ℬ(·) : Ω → Ω for the set of buyers in Ω.

Production Structure Given Networks

Firms use production workers and intermediate inputs for production. Intermediate inputs

are imperfect substitutes with a constant elasticity of substitution, 𝜎 ≥ 1. Production

workers and the composite of intermediate inputs are combined in a Cobb-Douglas

aggregator with labor share, 𝛽 (0 ≤ 𝛽 ≤ 1):

𝑥(𝜔) = 1

𝛽𝛽
(
1 − 𝛽

)
1−𝛽 𝑙 (𝜔)

𝛽

(∫
𝜔′∈𝒮(𝜔)

𝑥(𝜔′, 𝜔) 𝜎−1

𝜎 𝑑𝜔′
) 𝜎

𝜎−1
(1−𝛽)

, (1)

where 𝑙 (𝜔) is demand for production workers used to produce 𝜔; 𝑥(𝜔′, 𝜔) is the demand

for product 𝜔′
used to produce 𝜔.

A representative household has a CES utility function with an elasticity of substitution

𝜎, which is the same elasticity as that for production:

𝑌 =

(∫
𝜔∈Ω

𝑦(𝜔) 𝜎−1

𝜎 𝑑𝜔

) 𝜎
𝜎−1

, (2)

where 𝑦(𝜔) = 𝑌
(
𝑝(𝜔)
𝑃

)−𝜎
is the final demand for product 𝜔. For all 𝜔, 𝑥(𝜔) satisfies the
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following market clearing condition:

𝑥(𝜔) =
∫
𝜔′∈ℬ(𝜔)

𝑥(𝜔, 𝜔′)𝑑𝜔′ + 𝑦(𝜔), (3)

Under monopolistic competition, suppliers charge a constant markup over their marginal

cost:

𝑝(𝜔′, 𝜔) = 𝑝𝑦(𝜔′) = 𝜇𝑐(𝜔′), (4)

where 𝑝(𝜔′, 𝜔) is the product price that supplier 𝜔′
charges to firm 𝜔, 𝑝𝑦(𝜔′) is the price

that supplier 𝜔′
charges to the final good consumer, 𝑐(𝜔) is the marginal cost of product 𝜔,

and 𝜇 = 𝜎
𝜎−1

.

R&D, Matching, Entry, and Exit

Firms conduct R&D to acquire product lines of new variety
3
. We make the following

assumptions about the set of production networks of sellers and buyers for which new

products are available.

Assumption 1. For a new product line 𝜔′ derived from the existing firm’s product line 𝜔,

𝒮 (𝜔′) = 𝒮 (𝜔) ,

ℬ (𝜔′) = ℬ (𝜔)

In words, existing firms can develop new products and sell them to existing buyers

by using intermediate goods from suppliers of each product line owned by the existing

product line.

The product level cost function follow Klette and Kortum (2004):

𝜙̃(𝑥, 𝑛) = 𝑛𝑤𝐻𝜙(𝜆), (5)

where 𝜙(𝜆) = 1

𝜙𝜆
𝛾

with efficiency parameter 𝜙 > 0, 𝜆 is a per product innovation rate, and

𝛾 > 1
4
.

3
Our model is based on Klette and Kortum (2004), but abstracts from productivity differences and growth.

So instead of creative destruction, we assume variety creation.

4
This product level cost function can be micro-founded by a constant-returns-to-scale innovation technology

that uses R&D workers and the number of products as inputs. Namely, a firm 𝑓 hires 𝑙𝐻( 𝑓 ) units of skilled

workers to add one more product at the flow rate Λ( 𝑓 ) = 𝑛( 𝑓 )1−1/𝛾 (
𝜙𝑙𝐻( 𝑓 )

)
1/𝛾

, where Λ is the firm-level

flow rate.
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Firms are matched randomly with other firms at exogenous rates, 𝜁. The match is

exogenously terminated at the rate 𝛿𝑀 or if one of the firms in either side of the match exits.

Firms die at an exogenous rate 𝛿𝐹. Entrepreneurs have access to a linear entry technology,

where each R&D worker generates a flow of 𝜆𝐸. Entrants start with 𝜁0 mass of randomly

chosen sellers or buyers.

3.2 Characterization of decentralized Equilibrium

The model involves the problem of tracking trading relationships between continuous

products, which is impossible to solve in general, but we show that under our setting the

equilibrium conditions are summarized by the following functions over the state space of

ages, 𝑎.

Thereafter, let 𝐹(𝑎) be the cumulative density of products with respect to age 𝑎, and we

will use 𝑎 instead of 𝜔. Let 𝑁(𝑡) be the total measure of products. Let 𝐹(𝑎, 𝑡) be defined so

that the fraction of products which is owned by firms with age less than or equal to 𝑎 at

time 𝑡 is 𝐹 (𝑎, 𝑡) /𝑁(𝑡). Let 𝑁 𝑓 (𝑡) denote the total mass of firms. Because the total mass of

firms evolves according to
¤𝑁 𝑓 (𝑡) = 𝜆𝐸 − 𝛿𝐹𝑁 𝑓 (𝑡), in the steady state 𝑁 𝑓 = 𝜆𝐸/𝛿𝐹. We begin

with a matching distribution. As we will show later, because the optimal innovation rate

per product, 𝜆, depends on age, the matching process satisfies the following differential

equation.

Proposition 1. Law of motion of matching process: The distribution of matched products with age
less than 𝑎′ connected with an age 𝑎 product is given by

𝜕

𝜕𝑎′
𝑚(𝑎′, 𝑎) + 𝜕

𝜕𝑎
𝑚(𝑎′, 𝑎)︸                          ︷︷                          ︸

time evolution of the matching distribution

= − (𝛿𝑀 + 𝛿𝐹)𝑚(𝑎′, 𝑎)︸                   ︷︷                   ︸
link destruction

+ 𝜁
𝑁 𝑓

𝑓 (𝑎′)︸   ︷︷   ︸
random matching

+ 𝜆 (𝑎′)︸︷︷︸
innovation rate

𝑚(𝑎′, 𝑎) + 𝜁0

𝑁 𝑓
𝜆𝐸𝜹(𝑎)

︸                                    ︷︷                                    ︸
new products created by partners of age 𝑎′

, (6)

where 𝜆 (𝑎) is the innovation rate of age 𝑎 firm, subject to the boundary conditions

𝑚(𝑎′; 0) = 𝜁0

𝑁 𝑓
𝑓 (𝑎′) (7)

The matching distribution evolves over time because of the following reasons. First,

the measure of matched products increases when the currently linked firm creates a new
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variety at rate 𝜆 (𝑎′). Second, the matched products are lost when the link is terminated at

the exogenous rate 𝛿𝑀 or when the linked firm exits at the exogenous rate 𝛿𝐹. Finally, the

matched products are added when there is random matching with new firms.

In general, if connections change stochastically, one needs to track changes in connections

among countless firms each period. However, from the perspective of connected partners,

the randomness disappears due to the law of large numbers. Thus, the distribution can

be summarized by age. This formulation opens new possibilities for modeling two-sided

production network structures.

Next, armed with a matching distribution as a function of age, we can characterize

the equilibrium objects of firms using the demand shifters 𝐷(𝑎) and the cost shifters 𝑐(𝑎).
These functions solve the two fixed-point problems described in the following Lemma.

Lemma 1. The demand shifters and cost shifters satisfy the following fixed-point equations:

𝐷(𝑎) =
(
1 − 𝛽

)
𝜇−𝜎

∫ (
𝑐(𝑎′)
𝑤

) 𝛽
1−𝛽 (𝜎−1)

𝐷(𝑎′)𝑚(𝑎′, 𝑎)𝑑𝑎′ + 𝑃𝑌︸︷︷︸
GDP

(8)

𝑐 (𝑎) = 𝑤𝛽

(∫ (
𝜇𝑐(𝑎′)

)
1−𝜎

𝑚(𝑎′, 𝑎)𝑑𝑎′
) 1−𝛽

1−𝜎
(9)

where 𝑃 = 𝜇
(∫

𝑐(𝑎)1−𝜎𝑑𝐹(𝑎)
) 1

1−𝜎 .

The demand shifter represents the relative size of demand faced by firms at age 𝑎

relative to the size of the economy, 𝑃𝑌, as measured by nominal GDP. The size of demand

for intermediate goods is the sum of the portion of aggregate demand 𝐷(𝑎′) coming from

different ages toward 𝑎 for all 𝑎′. The presence of the markup in equation (8) implies that

the demand for intermediate goods shrinks as double marginalization is repeated for each

intermediate goods transaction. The cost shifters (9) are standard, but the point is that the

matching function is a function of 𝑎, so the cost function can also be summarized by 𝑎.

Using Lemma 1, it is easy to recover the product level equilibrium objects as a function

of 𝑎. The profit generated by a product with age 𝑎 can be characterized by

𝜋(𝑎) =
(
1 − 1

𝜇

) (
𝜇𝑐(𝑎)
𝑃

)
1−𝜎

𝐷(𝑎)

The fact that profit is a function of age suggests that the firm’s optimization problem

can also be summarized in terms of age. A firm with 𝑛 product lines and age 𝑎 maximizes
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the value 𝑉𝐹 (𝑛, 𝑎)

𝑟(𝑡)𝑉𝐹 (𝑛, 𝑎) = 𝑛𝜋(𝑎)︸︷︷︸
profits

− 𝛿𝐹𝑛
{
𝑉𝐹 (𝑛, 𝑎) −𝑉𝐹 (𝑛 − 1, 𝑎)

}︸                                  ︷︷                                  ︸
product exit

+𝑉𝐹
𝑎 (𝑛, 𝑎)︸    ︷︷    ︸

age effect

+ max

𝜆≥0

𝑛𝜆
{
𝑉𝐹 (𝑛 + 1, 𝑎) −𝑉𝐹 (𝑛, 𝑎)

}︸                                 ︷︷                                 ︸
expansion of variety

− 𝑛𝑤𝐻𝜙(𝜆)︸     ︷︷     ︸
R&D costs

 . (10)

In words, the first term on the right-hand side is the total static profit. The second term is

the change in firm value due to the exogenous withdrawal of one of its product lines. The

third term is the change in firm value due to aging. The fourth term is the change in firm

value if a product is added when a new product line arrives with a Poisson arrival rate 𝑛𝜆.

The last term is the R&D cost.

We can show that the value of each firm can be expressed as the sum of the value of the

product lines, defined as the net present discounted value of profits from a product line.

To show this, guess

𝑉𝐹 (𝑛, 𝑎) = 𝑛𝑉 (𝑎)

where 𝑉 (𝑎) is the value of product lines owned by an age 𝑎 firm, and obtain the following

HJB equation for 𝑉 (𝑎):(
𝜌 + 𝛿𝐹

)
𝑉(𝑎) = 𝜋(𝑎) +𝑉𝑎 (𝑎) + max

𝜆≥0

[
𝜆𝑉(𝑎) − 𝑤𝐻𝜙 (𝜆)

]
(11)

Finally, the first order condition yields an optimal innovation rate:

𝜆(𝑎) =
{

𝜙

𝛾𝑤𝐻
𝑉(𝑎)

} 1

𝛾−1

, (12)

which confirms 𝜆 is also a function of age.

Kolmogorov Forward Equations

Standard arguments establish that the differential equation governing the evolution of the

product density, 𝑓 (𝑎) at steady state takes the following form:

0 = −𝜕 𝑓 (𝑎)
𝜕𝑎

+ (𝜆(𝑎) − 𝛿𝐹) 𝑓 (𝑎) + 𝜆𝐸𝜹(𝑎) (13)
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where 𝜹(𝑎) denotes the Dirac delta function, which is zero everywhere except if 𝑎 = 0, and

satisfies

∫
𝜹(𝑎)𝑑𝑎 = 1. The time evolution of the firm distribution

𝜕 𝑓 (𝑎)
𝜕𝑡 = 0 is consistent

with the sum of the four terms in the right-hand side: The first term captures the increase

in firm age, the second term captures the increase in the number of product lines due to

the successful R&D by age 𝑎 firm minus the exogenous exit of product lines, and the third

term captures the addition of product lines due to the entry of age 0 firm.

Labor Market Clearing Conditions

The labor market clearing condition can be expressed using the demand shifters,

𝑤 = 𝛽𝜇−𝜎
∫ (

𝑐(𝑎)
𝑃

)
1−𝜎

𝐷(𝑎) 𝑓 (𝑎)𝑑𝑎 (14)

The high skilled labor market clearing condition is

𝐿𝐻 =

∫
𝜙 (𝜆(𝑎)) 𝑓 (𝑎)𝑑𝑎 (15)

4 R&D Allocation

Having established the decentralized equilibrium in Section 3, we now analyze welfare-

maximizing allocations under alternative institutional arrangements. This section presents

two benchmark planning problems: the First-Best Social Planner who internalizes all

externalities, and the Second-Best Constrained Planner who addresses only innovation

externalities while maintaining the decentralized goods market structure. These theoretical

benchmarks provide the foundation for our quantitative welfare analysis in Section 5.

4.1 Decentralized Equilibrium R&D Allocation

As a reference point for welfare comparisons, we first characterize the R&D allocation in

the decentralized equilibrium established in Section 3.

Proposition 2 (Decentralized Equilibrium R&D Allocation). The allocation of R&D workers
in the decentralized equilibrium satisfies:

𝑙𝐻(𝑎) =
𝑉(𝑎)

𝛾
𝛾−1∫

𝑉(𝑎)
𝛾

𝛾−1 𝑓 (𝑎)𝑑𝑎
∝ 𝑉(𝑎)

𝛾
𝛾−1

(16)
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where the product value function 𝑉(𝑎) solves:

𝜌𝑉 (𝑎) = 𝜋(𝑎)︸︷︷︸
profit

−𝛿𝐹𝑉 (𝑎)︸    ︷︷    ︸
product death

+ 𝑉𝑎 (𝑎)︸︷︷︸
age effect

+
[
𝜆(𝑎)𝑉 (𝑎) − 𝑤𝐻𝜙(𝜆(𝑎))

]︸                          ︷︷                          ︸
net value of innovation

(17)

where revenue is 𝑟(𝑎) =
(
𝜇𝑐(𝑎)
𝑃

)
1−𝜎

𝐷(𝑎) and profits are 𝜋(𝑎) =
(
1 − 1

𝜇

)
𝑟(𝑎).

This allocation is distorted due to both markup pricing in the goods market and the

failure to internalize innovation externalities through the production network.

4.2 First-Best Social Planner

The First-Best Social Planner maximizes welfare by internalizing all production and

innovation externalities in the economy. Unlike the decentralized equilibrium, the Social

Planner directly controls both goods production and R&D allocation to achieve the first-best

outcome.

The Social Planner maximizes the discounted utility flow

𝑈0 =

∫ ∞

0

exp

(
−𝜌𝑡

)
log𝑌 (𝑡) 𝑑𝑡 (18)

where 𝑌 =

(∫
𝑦(𝑎) 𝜎−1

𝜎 𝑑𝐹(𝑎)
) 𝜎

𝜎−1

subject to the following constraints: (1), (3), (6), (13), (14),

and (15). We use the fact that the allocation of production workers is static to solve a

two-stage maximization problem. First, we characterize the allocation of general workers

with 𝑓 (𝑎) and 𝑚(𝑎′, 𝑎) as given. Next, this allocation is solved as a dynamic optimization

problem using a maximum value function with respect to 𝑓 (𝑎) and 𝑚(𝑎′, 𝑎).
First, the social planner’s static allocation

(
𝑦(𝑎), 𝑥(𝑎), 𝑙(𝑎), 𝑥(𝑎′, 𝑎)

)
problem satisfies the

following problems:

max

(∫
𝑦(𝑎) 𝜎−1

𝜎 𝑑𝐹(𝑎)
) 𝜎

𝜎−1
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subject to

𝑥(𝑎) = 1

𝛽𝛽
(
1 − 𝛽

)
1−𝛽 𝑙 (𝑎)

𝛽

(∫
𝑥(𝑎′, 𝑎) 𝜎−1

𝜎 𝑚(𝑎′, 𝑎)𝑑𝑎′
) 𝜎

𝜎−1
(1−𝛽)

, (19)

𝑥(𝑎) =
∫

𝑥(𝑎′, 𝑎)𝑚(𝑎′, 𝑎)𝑑𝑎′ + 𝑦(𝑎), (20)∫
𝑙(𝑎)𝑑𝐹(𝑎) = 1 (21)

We make the following transformation to compare this problem with the characterization in

the cost function in the decentralized equilibrium. By relabeling the Lagrange multipliers

of the above problem appropriately, we obtain the following Lemma.

Lemma 2. The static allocation can be characterized by the following 𝑃𝑆𝑃 , 𝐷(𝑎)𝑆𝑃 and 𝑐(𝑎)𝑆𝑃 .
They solve the following equations.

𝐷𝑆𝑃(𝑎) =
(
1 − 𝛽

) ∫ [
𝑐(𝑎′)𝑆𝑃

] 𝛽
1−𝛽 (𝜎−1)

𝐷𝑆𝑃(𝑎′)𝑚(𝑎′, 𝑎)𝑑𝑎′ + 1, (22)

𝑐𝑆𝑃 (𝑎) =
(∫ (

𝑐𝑆𝑃(𝑎′)
)

1−𝜎
𝑚(𝑎′, 𝑎)𝑑𝑎′

) 1−𝛽
1−𝜎

, (23)

(
𝑃𝑆𝑃

)
1−𝜎

= 𝛽

∫
𝑐𝑆𝑃(𝑎)1−𝜎𝐷𝑆𝑃(𝑎) 𝑓 (𝑎)𝑑𝑎, (24)

𝑃𝑆𝑃 =

(∫
𝑐𝑆𝑃(𝑎)1−𝜎 𝑓 (𝑎)𝑑𝑎

) 1

1−𝜎
(25)

Given the solutions, we could recover the solution of the original problem (𝑥𝑆𝑃(𝑎), 𝑦𝑆𝑃(𝑎), and
𝑙𝑆𝑃(𝑎)) as 𝑥𝑆𝑃(𝑎) = 𝐷𝑆𝑃(𝑎)

𝑃1−𝜎𝑐𝑆𝑃(𝑎)𝜎 ,𝑦
𝑆𝑃(𝑎) = 𝑐𝑆𝑃(𝑎)−𝜎, and 𝑙𝑆𝑃(𝑎) = 𝛽𝑐𝑆𝑃(𝑎)𝑥𝑆𝑃(𝑎).

This Lemma 2 is useful for characterizing static allocations because it gives the social

planner analogs of the demand (36) and cost shifters (9) and the price index in the

decentralized equilibrium. Also, by comparing with Lemma 1, we can see that the two

allocations coincide only when 𝜇 = 1, i.e., the goods market equilibrium is inefficient.

We then redefine the social planner’s problem using Lemma 2: using 𝑦𝑆𝑃(𝑎) = 𝑐𝑆𝑃(𝑎)−𝜎,

(24), and (25), we transform the social planner’s objective function as follows

𝑈0 =

∫ ∞

0

exp

(
−𝜌𝑡

)
log

(∫
𝑐(𝑎)1−𝜎 𝑓 (𝑎)𝑑𝑎

)
𝑑𝑡
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=

∫ ∞

0

exp

(
−𝜌𝑡

) 𝜎 − 1

𝜎
log

(
𝛽

∫
𝑐𝑆𝑃(𝑎)1−𝜎𝐷𝑆𝑃(𝑎) 𝑓 (𝑎)𝑑𝑎

)
𝑑𝑡

The social planner maximizes the above objective function subject to (6), (13), (22), (23),

(24), and (25). The following Proposition characterizes the optimal allocation of the social

planner’s R&D workers.

Proposition 3 (First-Best Social Planner R&D Allocation). The allocation of R&D workers in
the First-Best Social Planner satisfies:

𝑙𝑆𝑃𝐻 (𝑎) ∝
(
𝑉𝑆𝑃(𝑎)

) 𝛾
𝛾−1

(26)

where 𝑉𝑆𝑃(𝑎) is the social value function that solves:

𝜌𝑉𝑆𝑃 (𝑎) = 𝑟𝑆𝑃(𝑎) − 𝛿𝐹𝑉
𝑆𝑃 (𝑎) +𝑉𝑆𝑃

𝑎 (𝑎)
+

[
𝜆𝑆𝑃(𝑎)𝑉𝑆𝑃 (𝑎) − 𝑤𝑆𝑃

𝐻 𝜙(𝜆𝑆𝑃(𝑎))
]

+
∫

𝑉𝑀 (𝑎′, 𝑎)
{
𝜁
𝑁 𝑓

𝑓 (𝑎′) − 𝛿𝑀𝑚(𝑎′, 𝑎)
}
𝑑𝑎′ (27)

and where 𝑉𝑀 (𝑎′, 𝑎) is the social value of a match between a buyer of age 𝑎 and a supplier of age 𝑎′.
The term 𝑤𝑆𝑃

𝐻
is the shadow wage on R&D labor in the planner’s problem.

By comparing the value functions of Propositions 2 and 3, we can identify two channels

of R&D misallocation.

Two Channels of R&D Misallocation

Distortions from Market Power: The first channel arises from markup pricing in the

goods market. While the markup 𝜇 is uniform across firms, the network structure creates

heterogeneous degrees of double marginalization. Older, more central firms are embedded in

longer supply chains, causing their revenues, 𝑟(𝑎), to be disproportionately suppressed

relative to the social planner’s equivalent, 𝑟𝑆𝑃(𝑎). This distorts the private value of

innovation, 𝑉(𝑎), and consequently the allocation of R&D resources. This force, related to

the static misallocation literature, systematically disincentivizes R&D in older firms.

Network-Formation Externalities: The second channel is a network-formation exter-

nality. The fundamental source of this externality is that an individual firm 𝑎’s R&D

investment, 𝜆(𝑎), alters an aggregate state variable of the economy—the product density

𝑓 (𝑎)—an effect the firm does not internalize. A change in 𝑓 (𝑎) affects the matching process

for all other firms, altering the composition of trading opportunities. Specifically, when a
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relationship is formed or dissolved, a social surplus, measured by the value 𝑉𝑀 (𝑎′, 𝑎), is

created or destroyed. However, firm 𝑎 only considers its own private portion of this value,

ignoring the benefit accruing to or the loss incurred by its supplier, 𝑎′. This uninternalized

value is quantified as the "network-formation externality wedge":

wedge(𝑎) =
∫

𝑉𝑀 (𝑎′, 𝑎)
{
𝜁
𝑁 𝑓

𝑓 (𝑎′) − 𝛿𝑀𝑚(𝑎′, 𝑎)
}
𝑑𝑎′ (28)

This wedge evaluates the marginal contribution of a firm of type 𝑎’s existence to the net

flow of relationships in the market, valued at the full social value 𝑉𝑀
. The magnitude of

this externality varies with firm age 𝑎, leading to a misallocation of R&D resources. A

quantitative assessment of the resulting misallocation is conducted in Section 5.

4.3 Second-Best Constrained Planner

To isolate the pure effect of innovation externalities and understand their contribution

to total welfare losses, we introduce the Second-Best Constrained Planner. This planner

represents an intermediate case between the decentralized equilibrium and the First-Best

Social Planner, allowing us to decompose welfare distortions into two distinct channels:

markup distortions in goods markets and innovation externalities in R&D allocation. By

maintaining the decentralized goods market structure while optimally allocating R&D

workers, the Constrained Planner addresses only innovation externalities, enabling us to

quantify the isolated welfare impact of network formation externalities.

The Constrained Planner maximizes the same objective function (18) as the First-Best

Social Planner:

𝑈𝐶𝑃
0

=

∫ ∞

0

exp

(
−𝜌𝑡

)
log𝑌 (𝑡) 𝑑𝑡 (29)

subject to maintaining the decentralized goods market structure from Section 3: (6), (8), (9),

(13), (14), and (15). The Constrained Planner optimally allocates only R&D workers 𝑙𝐻(𝑎)
to address innovation externalities while preserving the static goods market distortions

characterized by the decentralized markup structure.

Proposition 4 (Constrained Planner’s R&D Allocation). The Constrained Planner’s allocation
of R&D workers satisfies:

𝑙𝐶𝑃𝐻 (𝑎) ∝ [𝑉𝐶𝑃(𝑎)]
𝛾

𝛾−1
(30)
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where the constrained social value function 𝑉𝐶𝑃(𝑎) solves:

𝜌𝑉𝐶𝑃 (𝑎) = 𝑟(𝑎) − 𝛿𝐹𝑉
𝐶𝑃 (𝑎) +𝑉𝐶𝑃

𝑎 (𝑎)
+

[
𝜆𝐶𝑃(𝑎)𝑉𝐶𝑃 (𝑎) − 𝑤𝐶𝑃

𝐻 𝜙(𝜆𝐶𝑃(𝑎))
]

+
∫

𝑉𝑀,𝐶𝑃 (𝑎′, 𝑎)
{
𝜁
𝑁 𝑓

𝑓 (𝑎′) − 𝛿𝑀𝑚(𝑎′, 𝑎)
}
𝑑𝑎′ (31)

where 𝑟(𝑎) =
(
𝜇𝑐(𝑎)
𝑃

)
1−𝜎

𝐷(𝑎) uses the decentralized demand and cost shifters 𝐷(𝑎) and 𝑐(𝑎) from
equations (8) and (9), respectively, and 𝑤𝐶𝑃

𝐻
denotes the corresponding shadow wage on R&D labor.

The Constrained Planner represents a realistic policy scenario where governments can

influence R&D allocation through subsidies or taxes, but cannot directly intervene in goods

market pricing decisions due to informational or institutional constraints.

Elimination of Intensive Margin Distortions

By maintaining the decentralized goods market structure, the Constrained Planner elimi-

nates the intensive margin distortions present in the First-Best Social Planner. The markup

distortions from equations (8) and (9) are preserved, meaning that the heterogeneous

double marginalization effects remain unchanged from the decentralized equilibrium.

Consequently, the Constrained Planner addresses only the extensive margin externalities—

the network formation externalities captured by the

∫
𝑉𝑀,𝐶𝑃 (𝑎′, 𝑎)

{
𝜁
𝑁 𝑓

𝑓 (𝑎′) − 𝛿𝑀𝑚(𝑎′, 𝑎)
}
𝑑𝑎′

term in equation (31). This isolates the pure effect of internalizing network formation

externalities while maintaining all markup-related distortions, making it particularly

relevant for understanding the welfare gains from targeted R&D policies.

5 Quantitative Analysis

This section presents the estimation of our supply chain innovation model with network-

formation externalities using Japanese firm-level data, providing empirical validation of

the theoretical framework developed in Section 4. We employ a two-stage approach: first,

we estimate six structural parameters using Simulated Method of Moments (SMM) under

the decentralized equilibrium characterized by Proposition 2, targeting moments from

the observed age-based matching matrix. Second, we use these estimated parameters as

inputs to solve for counterfactual allocations under the alternative institutional arrange-

ments analyzed in Section 4—specifically the First-Best Social Planner and Second-Best

Constrained Planner solutions from Propositions 3 and 4.
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This methodology allows us to quantify the welfare implications of the two channels of

R&D misallocation identified in Section 4: distortions from market power and network

formation externalities. By comparing the estimated decentralized equilibrium with the

theoretical benchmarks, we can isolate the welfare effects from addressing different types

of market failures while maintaining structural consistency across all policy environments.

5.1 Parameter Estimation

5.1.1 Estimation Strategy

Our estimation strategy follows a two-stage approach designed to isolate the welfare effects

of policy interventions. In the first stage, we estimate structural parameters under the

decentralized equilibrium using Simulated Method of Moments (SMM), targeting moments

from the age-based matching matrix that characterizes network formation patterns in

Japanese supply chains. The model is estimated using 100 Halton draws to reduce

simulation variance, with the objective function minimizing the weighted distance between

empirical and model-implied moments.

The parameter vector to be estimated is 𝜽 = (𝜁, 𝜁0, 𝛿𝑀 , 𝛾, 𝜙, 𝛿𝐹), where 𝜁 represents

the network formation efficiency parameter, 𝜁0 captures the initial network density at firm

entry, 𝛿𝑀 is the network link destruction rate, 𝛾 determines the R&D cost curvature, 𝜙

measures R&D productivity, and 𝛿𝐹 represents the firm exit rate.

In the second stage, we take the estimated parameter vector 𝜽̂ as given and solve for

equilibrium allocations under the alternative institutional arrangements analyzed in Section

4. This approach ensures that all welfare comparisons are conducted under identical

structural parameters, isolating the pure effect of policy interventions. The First-Best Social

Planner solution from equation (26) represents the first-best allocation that internalizes

all externalities, while the Second-Best Constrained Planner from equation (30) addresses

only the network formation externalities while preserving the distortions from market

power present in the decentralized market structure.

5.1.2 Estimated Parameters

The following parameters were estimated using Simulated Method of Moments targeting

moments from the age-based matching matrix that characterizes network formation

patterns in Japanese supply chains.

The network formation rate 𝜁 = 0.3165 indicates moderate efficiency in supply chain

matching, while the high initial connectivity 𝜁0 = 0.7371 suggests new firms enter with
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Table 3: Model Parameters

Parameter Symbol Value

Internally Estimated Parameters
Network formation rate 𝜁 0.3165

Initial connectivity 𝜁0 0.7371

Link destruction rate 𝛿𝑀 0.0100

R&D curvature 𝛾 2.1316

R&D efficiency 𝜙 0.0003842

Firm exit rate 𝛿𝐹 0.0400

Externally Calibrated Parameters
Elasticity of substitution 𝜎 3

Labor share 𝛽 0.33

Discount rate 𝜌 0.05

Entry mass 𝜆𝐸 1

Notes: Internal parameters estimated using Simulated Method of Moments targeting 16 moments from the

age-based matching matrix 𝑀𝑎𝑎 . SMM estimation uses 100 Halton draws to reduce simulation variance.

substantial existing networks.

The innovation parameters reveal substantial convexity in R&D costs (𝛾 = 2.13) and low

base productivity (𝜙 = 0.0004), consistent with high-risk, high-return industrial innovation.

The labor share parameter 𝛽 = 0.33 captures the double marginalization structure in

which upstream suppliers receive one-third of value added while downstream firms retain

two-thirds.

The externally calibrated parameters are set based on previous literature and institutional

knowledge. The elasticity of substitution 𝜎 = 3 follows Miyauchi (2024), representing

moderate demand substitutability between intermediate goods. The discount rate 𝜌 = 0.05

reflects a standard value commonly used in the literature for firm-level time preferences.

The entry mass 𝜆𝐸 = 1 serves as a normalization of the firm entry flow. Under monopolistic

competition with constant elasticity of substitution, the implied markup is 𝜇 = 𝜎/(𝜎 − 1) =
1.5, capturing the price–cost margin that emerges from optimal pricing behavior.

5.1.3 Data Construction and Age Ranking

Before presenting model fit results, we describe the construction of the empirical matching

matrix used in estimation. Firms are classified into age quantiles rather than continuous

age values to ensure sufficient observations in each cell and to facilitate comparison with

model predictions.

The empirical matching matrix is constructed as follows: First, firms are ranked into
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Figure 5: Model Fit: Empirical (left) vs Simulated (right) Matching Matrices

Notes: The 3D surfaces show the density of network connections between firms of different age categories.

age quantiles based on their founding year, creating discrete age categories that ensure

balanced sample sizes across groups. Second, for each firm pair connected in the supply

chain network, we record both buyer and seller connections and compute the average

connection strength between age groups. Third, the resulting density matrix is normalized

so that all entries sum to one, representing the probability distribution of connections

across age pairs.

5.1.4 Model Fit

Figure 5 presents the model’s fit to the targeted moments through side-by-side 3D

visualizations of the empirical and simulated matching matrices. The model successfully

captures the age-based network formation patterns, with some systematic deviations for

very young and very old firms.

The model achieves a reasonable fit for most moments, capturing the essential features

documented in Section 2 while exhibiting some systematic deviations. The empirical

analysis reveals several patterns that the model successfully replicates: (1) the number of

suppliers and buyers increases monotonically with firm age, but with decreasing rates of

growth as firms mature; (2) firms exhibit positive age-assortative matching, where older

firms preferentially connect with other older firms; and (3) business relationships display

substantial stickiness, with more than 10 years required for 90% of relationships to dissolve.

The model successfully captures these age-dependent network formation patterns.

The positive age-assortative matching observed in the data emerges naturally from the

combination of random matching and relationship stickiness. As documented in Section 2,

while new relationship formation shows little age dependence, the persistence of existing

relationships causes firms and their partners to "age together," creating the observed

assortativity.
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The lifecycle patterns of innovation activity are also well-replicated. Section 2 documents

that both patent counts and R&D/sales ratios are monotonically increasing functions of

firm age, consistent with the model’s prediction that innovation incentives grow with

network connectivity. The empirical finding that connected firms’ R&D activities positively

affect their partners’ innovation provides validation for the network-formation externality

mechanisms central to the model.

However, some model limitations emerge in the precise quantitative fit. The random

matching assumption may not fully capture the complex partner selection processes

observed in reality, particularly for very young firms who may have access to specialized

network formation channels. Additionally, the model’s assumption of symmetric relation-

ship formation may oversimplify the heterogeneous search and matching costs that vary

across firm ages and industries.

To further verify that our model captures the empirical patterns documented in Section

2, we examine the targeted moments from Figure 5 from different perspectives. Figure 6

presents an alternative visualization of the age-based matching patterns, confirming that

the model successfully replicates the positive age assortativity observed in Section 2 data,

where firms tend to form partnerships with other firms of similar ages. While the model

exhibits slightly younger firm ages compared to Section 2 data, it successfully captures the

main empirical patterns, including the age assortativity structure and matching density

distribution observed in Japanese supply chain networks.

Figure 7 provides another perspective on the matching patterns, examining how

network connectivity and production efficiency evolve jointly over the firm lifecycle. The

left panel shows the mass of connections and the right panel shows the growth rate of

connections. This pattern confirms the Section 2 finding that mature firms achieve higher

productivity through extensive supplier relationships, with both the mass and growth rate

of connections exhibiting the tendencies documented in the empirical analysis.

5.2 Lifecycle Dynamics and R&D Misallocation

Our quantitative model, consistent with the empirical evidence in Section 2, generates

systematic patterns in how network positions and innovation incentives co-evolve over the

firm lifecycle. These dynamics are the key to understanding the origins and nature of R&D

misallocation.
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Figure 6: Age Assortativity in Business Networks

Notes: Average partner age plotted against a firm’s own age. The 45-degree line represents perfect age

assortativity.

5.2.1 Network Formation and Innovation Over the Lifecycle

Beyond the matching moments targeted in estimation, the model generates lifecycle

patterns for innovation and productivity that align with the data. Figure 8 illustrates that

innovation rates rise with age as firms build larger and more valuable supplier networks.

This creates a powerful complementarity between a firm’s network position and its incentive

to innovate. As firms age, the model’s dynamic process of random matching and link

stickiness leads them to accumulate a larger mass of connections, as documented in Figure

1a. The emergent network structure produces the positive age-assortative matching shown

in Figure 6, where older firms disproportionately connect with other mature firms. This

pattern drives two key mechanisms underlying higher productivity among older firms:

first, the love of variety effect from accessing a broader range of intermediate inputs, and

second, the quality composition effect from preferentially matching with more productive

mature suppliers. These complementarities between network position and innovation

create the crucial backdrop against which R&D decisions and their allocative consequences

unfold.
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Figure 7: Lifecycle Production Network Analysis

Notes: Left panel shows mass of connections by firm age. Right panel shows growth rate of connections by

firm age.

Table 4: Welfare Outcomes

Environment Equilibrium Social Planner Constrained Planner

Welfare gain – 35.84% 0.09%

5.2.2 Welfare Analysis and Sources of R&D Misallocation

Figure 9 reveals a striking pattern: older firms occupy central positions in production

networks with more buyers and suppliers, generating higher sales levels, yet their revenues

remain disproportionately suppressed relative to the socially optimal level due to markup

distortions that compound through supply chains. This suppression becomes more

pronounced with age, reflecting how the cumulative effect of double marginalization

particularly penalizes firms embedded in longer supply chains.

To analyze the welfare implications of this structure, we compare three policy environ-

ments as defined in Section 4: the decentralized equilibrium (DE), the social planner (SP), and

the constrained planner (CP).

Table 4 presents the welfare outcomes, while Figures 10a and 10b show the corre-

sponding R&D allocations. A key observation from Figure 10b is that the SP’s optimal

R&D allocation is remarkably similar to that of the DE. This finding allows us to infer the

primary source of the large welfare gain reported in Table 4. Since the R&D allocation

barely changes, the substantial 35.84% gain under the SP must predominantly stem from
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Figure 8: Firm Lifecycle Dynamics

Notes: Innovation rates increase with age (left panel), leading to productivity accumulation over the firm

lifecycle (right panel). Productivity is defined as the inverse of marginal cost, 𝑞(𝑎) = 1/𝑐(𝑎), normalized

relative to entrants. The patterns reflect the complementarity between network position and innovation

incentives.

correcting the misallocation of production inputs (general labor) that arises from eliminating

markup distortions. The minimal welfare gain of 0.09% under the CP, where only R&D

resources are reallocated, corroborates this conclusion.

This raises the central question for our analysis: if significant network-formation

externalities are present, why does the SP’s optimal R&D allocation so closely track the

distorted decentralized outcome, especially when the CP allocation deviates significantly?

The answer lies in the interaction of two powerful, counteracting forces that shape the SP’s

allocation.

The first force arises from the correction of market power distortions. In the DE, double

marginalization distorts the allocation of both production labor and R&D labor by dis-

proportionately suppressing the revenue and private value of innovation, 𝑉(𝑎), for older

firms embedded in long supply chains. The SP, by eliminating markups as part of the

transition from Proposition 2 to 3, boosts the relative value of these older firms. This effect,

in isolation, creates a strong incentive to reallocate R&D resources towards older firms.

The second force is the internalization of network-formation externalities. This effect is

isolated by the CP, whose optimal allocation is governed by Proposition 4. This allocation

differs from the DE only by the inclusion of the network-formation externality wedge from
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Notes: Revenue patterns across firm age under Decentralized Equilibrium (DE) and Social Planner (SP)

allocations. Both series are normalized to 1 at age 0.

equation (28):

wedge(𝑎) =
∫ ∞

0

𝑉𝑀(𝑎′, 𝑎)


𝜁 𝑓 (𝑎′)
𝑁 𝑓︸ ︷︷ ︸

Formation

− 𝛿𝑀𝑚(𝑎′, 𝑎)︸       ︷︷       ︸
Destruction


𝑑𝑎′

Here, 𝑉𝑀(𝑎′, 𝑎) is the total social value generated by the trading relationship between a

buyer of age 𝑎 and a supplier of age 𝑎′. This value represents the discounted present value

of all future surpluses created by the link, and is determined by its own Hamilton-Jacobi-

Bellman equation from Proposition 3:(
𝜌 + 𝛿𝐹 + 𝛿𝑀 − 𝜆 (𝑎)

)
𝑉𝑀 (𝑎′, 𝑎) = 𝑉𝑀

𝑎 (𝑎′, 𝑎) +𝑉𝑀
𝑎′ (𝑎′, 𝑎) +Ω(𝑎′, 𝑎)𝑟𝑆𝑃(𝑎)

where Ω(𝑎′, 𝑎) = 𝑐(𝑎′)1−𝜎∫
𝑐(𝑎′′)1−𝜎𝑚(𝑎′′,𝑎′)𝑑𝑎′′ is the expenditure share of supplier 𝑎′ in buyer 𝑎’s total

intermediate consumption. The value of a match is thus driven by the flow of revenue,

𝑟𝑆𝑃(𝑎), generated through the link.

The wedge thus quantifies the value a firm of age 𝑎 fails to internalize at the two margins
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Figure 10: R&D allocation outcomes across policy environments

Notes: The left panel shows normalized R&D labor demand across the three policy environments. The right

panel shows the relative allocation ratios to the decentralized equilibrium.

of relationship dynamics. The first term inside the integral is the formation component,

representing the gross inflow of new relationships. When a match occurs, a social surplus

𝑉𝑀(𝑎′, 𝑎) is created, but the innovating firm 𝑎 neglects the portion accruing to its new

supplier 𝑎′. The second term is the destruction component, representing the gross outflow

of dissolving relationships. When a link is lost, the social surplus 𝑉𝑀(𝑎′, 𝑎) is destroyed,

but firm 𝑎 externalizes the loss incurred by its supplier.

As shown by the dotted line in Figure 10b, internalizing this wedge alone, as the

CP does, reallocates R&D resources away from the oldest firms relative to the DE. This

direction results from the interplay of two competing effects. The first is the match value
effect: since older buyer firms are more productive, the social value of a single match with

them, 𝑉𝑀(𝑎′, 𝑎), is higher. This effect, in isolation, would make the externality larger for

older firms. The second is the net flow effect: young firms, with few existing relationships to

lose, have a much higher net rate of relationship formation. Our quantitative results show

that this second effect dominates. The value per match, 𝑉𝑀
, does not increase steeply

enough with age to offset the rapid decline in the net formation rate. Consequently, the

uninternalized value is largest for young firms, leading the CP to reallocate R&D resources

toward them.

In the Social Planner’s solution, these two forces act simultaneously and in opposite

directions on older firms. The push to allocate more resources to them to correct for market

power distortions is largely offset by the push to allocate less to them due to the specifics

of the network-formation externality. This cancellation explains why the SP’s final R&D

allocation appears close to the original decentralized one. The CP’s environment, lacking
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Notes: Decomposition of the network-formation externality wedge from equation (28) computed under the

Constrained Planner equilibrium. The formation component represents

∫
𝑉𝑀(𝑎′, 𝑎) 𝜁 𝑓 (𝑎

′)
𝑁 𝑓

𝑑𝑎′ and the

destruction component represents

∫
𝑉𝑀(𝑎′, 𝑎)𝛿𝑀𝑚(𝑎′, 𝑎)𝑑𝑎′. The net component is their difference.

the first force, reveals the unmitigated impact of the second, explaining its significant

deviation from the DE.

5.2.3 Policy Implications

Our quantitative results offer a clear policy implication, though one with important trade-

offs. The minimal welfare gain under the Constrained Planner (0.09%) demonstrates that

correcting R&D misallocation in isolation yields negligible benefits. This suggests that the

optimal policy focus should be on addressing the large welfare losses stemming from the

misallocation of production inputs due to market power.

However, a policy focused solely on eliminating market power could have a coun-

terintuitive side effect on the allocation of R&D. As the Constrained Planner’s solution

reveals, correcting only for the network-formation externality pushes the R&D allocation

for older firms even further from the decentralized equilibrium than the first-best allocation

does (Figure 10b). This implies that the optimal policy of removing markups might be

accompanied by an amplification of the R&D misallocation. Nevertheless, our findings

suggest this is a worthwhile trade-off. The quantitative impact of the R&D resource
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misallocation on aggregate welfare is vanishingly small compared to the large, first-order

gains from correcting the misallocation of production inputs.

6 Conclusion

This paper investigates how production networks shape firms’ R&D decisions, identifying

and quantifying the aggregate inefficiencies that arise from this relationship. Guided by

empirical patterns from Japanese firm-level data, we build a dynamic model where firms

establish supplier networks through an exogenous matching process and leverage these

connections to introduce new products.

Our framework uncovers a novel network-formation externality: firms’ private R&D

decisions improve the market-wide pool of trading partners, a positive spillover for which

they are not compensated. When we take this model to the data, our central finding is

that this externality interacts with market power distortions in a crucial way. The optimal

R&D allocation in a first-best world is nearly identical to the decentralized allocation.

This is because two counteracting forces on older firms almost perfectly offset each other:

correcting for markups pushes R&D resources towards them, while internalizing the

network-formation externality pushes resources away.

This result leads to a clear policy conclusion. Because the forces governing R&D

allocation cancel out, the optimal policy derives its substantial welfare gains not from

reallocating R&D, but from correcting the misallocation of production inputs due to market

power. Our findings underscore the importance of understanding the general equilibrium

interactions between market failures. Policies that target dynamic inefficiencies like R&D

misallocation in isolation, without addressing the large, underlying distortions from market

power, may have limited impact on aggregate welfare.
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Appendix for “Production Networks and R&D Allocation”

A Additional Empirical Results

A.1 Cross-sectional correlation between production and citation net-
works

In this section, we show that the production and citation networks overlap at the firm level.

Using the combined TDB and IIP patent databases, we find that citation relationships

in Japan are strongly associated with production links. Conditional on an observed

transactional relationship, the probability of a citation tie is roughly 30 times larger than

under a random benchmark. Moreover, this probability declines monotonically with

network distance, underscoring the importance of distinguishing the two networks when

working with firm-level data.

The integrated database covers Japanese firms that filed at least one patent application

between 1998 and 2019. We construct a patent-citation matrix with citing firms in

rows and cited firms in columns, where an entry of one indicates the presence of a

citation link. Analogously, we build an input-output matrix that records inter-firm

production relationships among patenting firms; the columns index suppliers, the rows

index purchasers, and a value of one denotes an active business relationship. These

matrices enumerate the potential links between Japanese patenting firms, which we use to

study how production and patent networks interact.

Panel (a) summarizes the estimates from a linear probability model relating direct

production links to patent citations. Columns (1)–(4) vary the set of control variables.

The estimated coefficient implies that, conditional on a direct business relationship, the

probability of observing a citation link rises by about 35% relative to the random benchmark.

The right column of panel (a) examines higher-order production-network linkages.

The probability of a citation link declines steadily with network distance: second- and

third-order links remain relevant, whereas fourth-order and more distant connections

are nearly irrelevant. Panel (b) provides a visual summary of this decay with respect to

production-network distance.
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Table A1: Summary of Production and Patent Network Links

Number of Patent Firms 10,481

Possible Combinations of Firms 109,851,361

Active Patent Filing Links 2,548,881 (2.3%)

Active Production Network Links 1,647,770 (1.5%)

Alternative measurement

To address concerns about the parametric assumptions of the linear probability model, we

also compute conditional probabilities for different subsamples 𝑔 ∈ 𝐺,

𝑃𝐶 ≡ Pr(patent connection = 1 | network connection = 1, 𝑔).

We estimate them empirically as

𝑃̂𝐶 =
|patent connection = 1 ∩ network connection = 1, 𝑔|

|network connection = 1, 𝑔| ,

and compare them with the corresponding unconditional probabilities,

𝑃̂𝑈 =
|patent connection = 1, 𝑔|

|𝑔| .

We form subsamples using every combination of firm-pair characteristics—industry,

firm-size decile, and location. Figure A1 plots the conditional probabilities against the

corresponding unconditional probabilities for each group.

Across all groupings, the unconditional probability is close to zero because the matrices

are very sparse, whereas the average conditional probability remains around 30–40% given

a production-network connection.
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Table A2: Production Network and Patent Connection

(a) Network degrees and patent connection

1st 2nd 3rd 4th 5th

Connection degree of production network

0

0.1

0.2

0.3

0.4

0.5

M
ar

gi
na

l p
ro

ba
bi

lit
y 

of
 p

at
en

t c
on

ne
ct

io
n

First Degree Connection Higher Order Degree Connection

(1) (2) (3) (4) Second Third Fourth Fifth

network connection 0.343*** 0.339*** 0.344*** 0.335*** 0.063*** 0.026*** 0.012*** 0.007***

(0.062) (0.062) (0.062) (0.061) (0.011) (0.005) (0.002) (0.001)

Industry Pair FE ✓ ✓ ✓ ✓ ✓ ✓

Size Pair FE ✓ ✓ ✓ ✓ ✓ ✓

Prefecture Pair FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 93161103 93161104 93161104 93161103 93161103 93161103 93161103 93161103

Standard errors in parentheses

* p<0.10, ** p<0.05, *** p<0.01

Notes:

Panel (b) reports linear probability estimates that relate the possible combinations of patent firm-to-firm

networks in Table A1 to the presence of production-network links, controlling for firm-pair characteristics:

(a) two-digit Japanese Standard Industrial Classification, (b) firm-size deciles, and (c) prefectures. Panel (a)

plots the corresponding coefficients.
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Figure A1: Conditional and unconditional probability of patent connection.

Notes: The x-axis reports the unconditional probability

|patent connection=1,𝑔|
|𝑔| , and the y-axis shows the

conditional probability

|patent connection=1∩network connection=1,𝑔|
|network connection=1,𝑔| . The groups 𝑔 ∈ 𝐺 include all combinations of

firm-pair characteristics: (a) two-digit Japan Standard Industrial Classification, (b) firm-size deciles, and (c)

prefectures. Groups with fewer than 50 observations in either patent relationships or production-network

connections are excluded.
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B Equation list of Equilibrium

The list of equations for solving the steady state equilibrium is as follows: (i) the value

of product 𝑉 (𝑎); (ii) the innovation rates 𝜆(𝑎); (iii) the distribution of products 𝑓 (𝑎); (vi)

the distribution of matched buyers and suppliers 𝑚(𝑎′, 𝑎); (v) the cost function 𝑐 (𝑎); (vi)

the demand shifter 𝐷(𝑎); (vii) the wage for production worker 𝑤; (viii) the wage for R&D

worker 𝑤𝐻 , and (ix) the price index 𝑃

1. The value of products:

(
𝜌 + 𝛿𝐹 − 𝜆 (𝑎)

)
𝑉(𝑎) =

(
1 − 1

𝜇

)
𝑟(𝑎) +𝑉𝑎 (𝑎) − 𝑤𝐻𝜙 (𝜆 (𝑎))

where revenue, 𝑟(𝑎) is

𝑟(𝑎) =
(
𝜇𝑐(𝑎)
𝑃

)
1−𝜎

𝐷(𝑎)

and the price index, 𝑃 is

𝑃 = 𝜇

(∫
𝑐(𝑎)1−𝜎𝑑𝐹(𝑎)

) 1

1−𝜎

2. FOC for the innovation rate:

𝜆(𝑎) =
{

𝜙

𝛾𝑤𝐻
𝑉(𝑎)

} 1

𝛾−1

(32)

3. The distribution of products 𝑓 (𝑎):

0 = − 𝜕

𝜕𝑎
𝑓 (𝑎) + (𝜆(𝑎) − 𝛿𝐹) 𝑓 (𝑎) + 𝜆𝐸𝜹(𝑎) (33)

4. The distributions of matched products 𝑚(𝑎′, 𝑎):

𝜕

𝜕𝑎
𝑚(𝑎′, 𝑎) = − 𝜕

𝜕𝑎′
𝑚(𝑎′, 𝑎) − (𝛿𝑀 + 𝛿𝐹)𝑚(𝑎′, 𝑎) + 𝜁

𝑁 𝑓
𝑓 (𝑎′) (34)

+ 𝜁0

𝜆𝐸

𝑁 𝑓
𝜹(𝑎) + 𝜆 (𝑎′)𝑚(𝑎′, 𝑎)

subject to the boundary condition 𝑚(𝑎′; 0) = 𝜁0 𝑓 (𝑎′).
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5. The cost shifter 𝑐 (𝑎) satisfies

𝑐 (𝑎) =𝑤𝛽

(∫ (
𝜇𝑐(𝑎′)

)
1−𝜎

𝑚(𝑎′, 𝑎)𝑑𝑎′
) 1−𝛽

1−𝜎
(35)

where 𝑤 =
𝛽

𝜇−(1−𝛽) .

6. The demand shifter for an age 𝑎 product 𝐷(𝑎) satisfies

𝐷(𝑎) =
(
1 − 𝛽

)
𝜇−𝜎

∫ [
𝑐(𝑎′)
𝑤

] 𝛽
1−𝛽 (𝜎−1)

𝐷(𝑎′)𝑚(𝑎′, 𝑎)𝑑𝑎′ + 1 (36)

7. The skilled wage 𝑤𝐻 satisfies the skilled labor market clearing condition

1 =

∫
𝜙 (𝜆(𝑎)) 𝑓 (𝑎)𝑑𝑎 (37)

Equation list of social planner solution:

1. Social value function(
𝜌 + 𝛿𝐹 − 𝜆𝑆𝑃(𝑎)

)
𝑉𝑆𝑃(𝑎) =𝑟𝑆𝑃(𝑎) + 𝜕

𝜕𝑎
𝑉𝑆𝑃(𝑎) − 𝑤𝑆𝑃

𝐻 𝜙
(
𝜆𝑆𝑃(𝑎)

)
+

∫
𝑉𝑀 (𝑎′, 𝑎)

{
𝜁
𝑁 𝑓

𝑓 (𝑎′) − 𝛿𝑀𝑚(𝑎′, 𝑎)
}
𝑑𝑎′,

where

𝑟𝑆𝑃(𝑎) =
(
𝑐𝑆𝑃(𝑎)
𝑃𝑆𝑃

)
1−𝜎

𝐷𝑆𝑃(𝑎)

𝑃𝑆𝑃 =

(∫
𝑐𝑆𝑃(𝑎)1−𝜎 𝑓 (𝑎)𝑑𝑎

) 1

1−𝜎

(
𝜌 + 𝛿𝐹 + 𝛿𝑀 − 𝜆𝑆𝑃 (𝑎)

)
𝑉𝑀 (𝑎′, 𝑎) = 𝜕

𝜕𝑎
𝑉𝑀 (𝑎′, 𝑎) + 𝜕

𝜕𝑎′
𝑉𝑀 (𝑎′, 𝑎)

+ 𝑟𝑆𝑃(𝑎)
(
1 − 𝛽

)
Ω(𝑎′, 𝑎) 𝑓 (𝑎′)

Ω(𝑎′, 𝑎) = 𝑐𝑆𝑃(𝑎′)1−𝜎∫
𝑐𝑆𝑃(𝑎′′)1−𝜎𝑚(𝑎′′, 𝑎)𝑑𝑎′′
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2. FOC for the innovation rate:

𝜆𝑆𝑃(𝑎) =
{

𝜙

𝛾𝑤𝑆𝑃
𝐻

𝑉𝑆𝑃(𝑎)
} 1

𝛾−1

(38)

3. The distribution of products 𝑓 (𝑎):

0 = − 𝜕

𝜕𝑎
𝑓 (𝑎) +

(
𝜆𝑆𝑃(𝑎) − 𝛿𝐹

)
𝑓 (𝑎) + 𝜆𝐸𝜹(𝑎) (39)

4. The distribution of matched products 𝑚(𝑎′, 𝑎):

𝜕

𝜕𝑎
𝑚(𝑎′, 𝑎) = − 𝜕

𝜕𝑎′
𝑚(𝑎′, 𝑎) − (𝛿𝐹 + 𝛿𝑀)𝑚(𝑎′, 𝑎) + 𝜁

𝑁 𝑓
𝑓 (𝑎′) (40)

+ 𝜁0

𝜆𝐸

𝑁 𝑓
𝜹(𝑎) + 𝜆𝑆𝑃 (𝑎′)𝑚(𝑎′, 𝑎)

subject to the boundary condition 𝑚(𝑎′; 0) = 𝜁0

𝑁 𝑓
𝑓 (𝑎′).

5. The cost shifter 𝑐 (𝑎) satisfies

𝑐𝑆𝑃 (𝑎) =
(∫ (

𝑐𝑆𝑃(𝑎′)
)

1−𝜎
𝑚(𝑎′, 𝑎)𝑑𝑎′

) 1−𝛽
1−𝜎

(41)

6. The demand shifter for an age 𝑎 product 𝐷(𝑎) satisfies

𝐷𝑆𝑃(𝑎) =
(
1 − 𝛽

) ∫
𝑐(𝑎′)𝑆𝑃

𝛽
1−𝛽 (𝜎−1)

𝐷𝑆𝑃(𝑎′)𝑚(𝑎′, 𝑎)𝑑𝑎′ + 1 (42)

7. The skilled wage 𝑤𝑆𝑃
𝐻

satisfies the skilled labor market clearing condition

1 =

∫
𝜙

(
𝜆𝑆𝑃(𝑎)

)
𝑓 (𝑎)𝑑𝑎 (43)
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C Proofs and derivation

Proof of Lemma 1

Given the production technology of intermediate good production, firm 𝜔 has the following

marginal cost:

𝑐(𝜔) = 𝑤𝛽

(∫
𝜔′∈𝒮(𝜔)

𝑝(𝜔′, 𝜔)1−𝜎𝑑𝜔′
) 1−𝛽

1−𝜎

Inserting 𝑝(𝜔′, 𝜔) = 𝜇𝑐(𝜔′) and rewriting the integral using the matched product density

𝑚(𝑎′, 𝑎), we get

𝑐 (𝑎) = 𝑤𝛽

(∫ (
𝜇𝑐(𝑎′)

)
1−𝜎

𝑚(𝑎′, 𝑎)𝑑𝑎′
) 1−𝛽

1−𝜎

Using Shephard’s Lemma, Hicksian demand for 𝜔 from 𝜔′
can be obtained by

𝑥(𝜔, 𝜔′) = 𝜕𝑐(𝜔′)𝑥(𝜔′)
𝜕𝑝 (𝜔)

=
𝜕 log 𝑐(𝜔′)𝑥(𝜔′)

𝜕𝑝 (𝜔) 𝑐(𝜔′)𝑥(𝜔′)

=
𝜕

𝜕𝑝 (𝜔)

log

𝑤𝛽

(∫
𝜔′′∈𝒮(𝜔′)

𝑝(𝜔′′)1−𝜎𝑑𝜔′′
) 1−𝛽

1−𝜎
𝑥(𝜔′)


 𝑐(𝜔′)𝑥(𝜔′)

=
1 − 𝛽

1 − 𝜎
𝜕

𝜕𝑝 (𝜔)

[
log

(∫
𝜔′′∈𝒮(𝜔′)

𝑝(𝜔′′)1−𝜎𝑑𝜔′′
)]

𝑐(𝜔′)𝑥(𝜔′)

=
1 − 𝛽

1 − 𝜎

(1 − 𝜎) 𝑝(𝜔)−𝜎∫
𝜔′′∈𝒮(𝜔′) 𝑝(𝜔′′)1−𝜎𝑑𝜔′′

𝑐(𝜔′)𝑥(𝜔′)

=
(
1 − 𝛽

) 𝑝(𝜔)−𝜎∫
𝜔′′∈𝒮(𝜔′) 𝑝(𝜔′′)1−𝜎𝑑𝜔′′

𝑐(𝜔′)𝑥(𝜔′) (44)

Note that

𝑐(𝜔) = 𝑤𝛽

(∫
𝜔′∈𝒮(𝜔)

𝑝(𝜔′)1−𝜎𝑑𝜔′
) 1−𝛽

1−𝜎

𝑐(𝜔)
1−𝜎
1−𝛽 = 𝑤

𝛽
1−𝛽 (1−𝜎)

∫
𝜔′∈𝒮(𝜔)

𝑝(𝜔′)1−𝜎𝑑𝜔′∫
𝜔′∈𝒮(𝜔)

𝑝(𝜔′)1−𝜎𝑑𝜔′ = 𝑤
𝛽

1−𝛽 (𝜎−1)
𝑐(𝜔)

1−𝜎
1−𝛽
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Inserting this into (44),

𝑥(𝜔, 𝜔′) =
(
1 − 𝛽

)
𝑝(𝜔)−𝜎𝑐(𝜔′)𝑥(𝜔′)𝑤− 𝛽

1−𝛽 (𝜎−1)
𝑐(𝜔′)

𝜎−1

1−𝛽

𝑥(𝜔, 𝜔′) =
(
1 − 𝛽

)
𝑝(𝜔)−𝜎𝑤− 𝛽

1−𝛽 (𝜎−1)
𝑐(𝜔′)

𝜎−𝛽
1−𝛽 𝑥(𝜔′)

From the good market clearing condition,

𝑥(𝜔) =
∫
𝜔′∈ℬ(𝜔)

𝑥(𝜔, 𝜔′)𝑑𝜔′ + 𝑦(𝜔)

=

∫
𝜔′∈ℬ(𝜔)

(
1 − 𝛽

)
𝑝(𝜔)−𝜎𝑤− 𝛽

1−𝛽 (𝜎−1)
𝑐(𝜔′)

𝜎−𝛽
1−𝛽 𝑥(𝜔′)𝑑𝜔′ + 𝑦(𝜔)

=
(
1 − 𝛽

)
𝑝(𝜔)−𝜎𝑤− 𝛽

1−𝛽 (𝜎−1)
∫
𝜔′∈ℬ(𝜔)

𝑐(𝜔′)
𝜎−𝛽
1−𝛽 𝑥(𝜔′)𝑑𝜔′ + 𝑌𝑝(𝜔)−𝜎𝑃𝜎

Using the matched product distribution function

𝑥(𝑎) =
(
1 − 𝛽

)
𝑝(𝑎)−𝜎𝑤− 𝛽

1−𝛽 (𝜎−1)
∫

𝑐(𝑎′)
𝜎−𝛽
1−𝛽 𝑥(𝑎′)𝑚(𝑎′, 𝑎)𝑑𝑎′ + 𝑌𝑝(𝑎)−𝜎𝑃𝜎

Denote 𝐷(𝑎) = 𝑥(𝑎)𝑃1−𝜎𝑝(𝑎)𝜎 as demand shifter for 𝑎,

𝐷(𝑎) =
(
1 − 𝛽

)
𝜇−𝜎

∫ [
𝑐(𝑎′)
𝑤

] 𝛽
1−𝛽 (𝜎−1)

𝐷(𝑎′)𝑚(𝑎′, 𝑎)𝑑𝑎′ + 𝑃𝑌

Finally, the ideal price index 𝑃 is given by

𝑃 =

(∫
𝜔∈Ω

𝑝(𝜔)1−𝜎𝑑𝜔
) 1

1−𝜎

𝑃 =

(∫ (
𝜇𝑐(𝑎)

)
1−𝜎

𝑑𝐹(𝑎)
) 1

1−𝜎

Labor Demand and Labor Market Clearing for Production Worker

Using Shephard’s Lemma, labor demand from 𝜔 can be obtained by

𝑙(𝜔) = 𝜕𝑐(𝜔)
𝜕𝑤

𝑥(𝜔)

=
𝜕 log 𝑐(𝜔)𝑥(𝜔)

𝜕𝑤
𝑐(𝜔)𝑥(𝜔)
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=
𝜕

𝜕𝑤

log

𝑤𝛽

(∫
𝜔′∈𝒮(𝜔)

𝑝(𝜔′)1−𝜎𝑑𝜔′
) 1−𝛽

1−𝜎
𝑥(𝜔)


 𝑐(𝜔)𝑥(𝜔)

= 𝛽
𝜕

𝜕𝑤

[
log𝑤

]
𝑐(𝜔)𝑥(𝜔)

=
𝛽𝑐(𝜔)𝑥(𝜔)

𝑤

With 𝑎 notation,

𝑤𝑙(𝑎) = 𝛽𝑐(𝑎)𝑥(𝑎)
= 𝛽𝑐(𝑎)𝐷(𝑎)𝑃𝜎−1𝑝(𝑎)−𝜎

= 𝛽𝜇−𝜎
(
𝑐(𝑎)
𝑃

)
1−𝜎

𝐷(𝑎)

From unskilled labor market clearing condition,

𝑤 = 𝛽𝜇−𝜎
∫ (

𝑐(𝑎)
𝑃

)
1−𝜎

𝐷(𝑎)𝑑𝐹(𝑎)

Decomposition of Value Function

Conjecture that the value function takes an additive form

𝑉𝐹 (𝑛, 𝑎) = 𝑛𝑉 (𝑎) .

Then, 10 can be expressed by

𝑟𝑛𝑉 (𝑎) − 𝑛𝑉𝑡 (𝑎) =𝑛𝜋(𝑎) − 𝛿𝐹𝑛𝑉 (𝑎) + 𝑛𝑉𝑎 (𝑎) + max

𝜆≥0

[
𝑛𝜆𝑉 (𝑎) − 𝑛𝑤𝐻𝜙(𝜆)

]
Dividing both side by 𝑛,

𝑟(𝑡)𝑉 (𝑎) −𝑉𝑡 (𝑎) =𝜋(𝑎) − 𝛿𝐹𝑉 (𝑎) +𝑉𝑎 (𝑎) + max

𝜆≥0

[
𝜆𝑉 (𝑎, 𝑡) − 𝑤𝐻𝜙(𝜆)

]
Proof of Lemma 2.

Proof. Let define 𝜇𝑝(𝑎) = 𝑌
1

𝜎 𝑐𝑆𝑃(𝑎) and 𝜇𝑙 = 𝑌
1

𝜎 as Lagrangian multipliers for (19) and (21).

Then, first order conditions are

𝑦(𝑎) = 𝑐𝑆𝑃(𝑎)−𝜎 , (45)

𝑙(𝑎) = 𝛽𝑐(𝑎)𝑆𝑃𝑥(𝑎), (46)
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and

𝑥(𝑎′, 𝑎) =
(
1 − 𝛽

) [
𝑐(𝑎)𝑆𝑃

]−𝜎 [
𝑐(𝑎′)𝑆𝑃

] 𝜎−𝛽
1−𝛽 𝑥(𝑎′) (47)

By substituting (46) and (47) into (19), we have

𝑥(𝑎) = 1

𝛽𝛽(1 − 𝛽)1−𝛽
[
𝛽𝑐𝑆𝑃(𝑎)𝑥(𝑎)

]𝛽 (∫ [
(1 − 𝛽)𝑐𝑆𝑃(𝑎)−𝜎𝑐𝑆𝑃(𝑎′)

𝜎−𝛽
1−𝛽 𝑥(𝑎′)

] 𝜎−1

𝜎

𝑚(𝑎′, 𝑎)𝑑𝑎′
) 𝜎

𝜎−1
(1−𝛽)

.

Cancelling 𝑥(𝑎) from both sides and rearranging yields

𝑐𝑆𝑃(𝑎) =
(∫ [

𝑐𝑆𝑃(𝑎′)
]

1−𝜎
𝑚(𝑎′, 𝑎)𝑑𝑎′

) 1−𝛽
1−𝜎

,

Next, by substituting (46) and (47) into (20), and with similar step in the proof of Lemma 1,

we could derive:

𝐷𝑆𝑃(𝑎) =
(
1 − 𝛽

) ∫ [
𝑐𝑆𝑃(𝑎′)

] 𝛽
1−𝛽 (𝜎−1)

𝐷𝑆𝑃(𝑎′)𝑚(𝑎′, 𝑎)𝑑𝑎′ + 1,

where 𝐷𝑆𝑃(𝑎) = 𝑥(𝑎)
[
𝑃𝑆𝑃

]
1−𝜎 [

𝑐𝑆𝑃(𝑎)
]𝜎

. Finally, from (21) we have:

1 = 𝛽

∫ (
𝑐(𝑎)𝑆𝑃
𝑃𝑆𝑃

)
1−𝜎

𝐷𝑆𝑃(𝑎) 𝑓 (𝑎)𝑑𝑎

□

D Social Planner’s Problem

Objective function

From Lemma 2, using 24

argmax

∫ ∞

0

exp

(
−𝜌𝑡

)
log

(∫
𝑦(𝑎) 𝜎−1

𝜎 𝑑𝐹(𝑎)
) 𝜎−1

𝜎

𝑑𝑡

argmax

∫ ∞

0

exp

(
−𝜌𝑡

) 𝜎 − 1

𝜎
log

(∫
𝑐𝑆𝑃(𝑎)1−𝜎𝑑𝐹(𝑎)

)
︸                    ︷︷                    ︸

𝑃1−𝜎

𝑑𝑡

=argmax

∫ ∞

0

exp

(
−𝜌𝑡

)
log

(
𝛽

∫
𝑐𝑆𝑃(𝑎)1−𝜎𝐷𝑆𝑃(𝑎) 𝑓 (𝑎)𝑑𝑎

)
𝑑𝑡
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=argmax

∫ ∞

0

exp

(
−𝜌𝑡

)
log

(∫
𝑐𝑆𝑃(𝑎)1−𝜎𝐷𝑆𝑃(𝑎) 𝑓 (𝑎)𝑑𝑎

)
𝑑𝑡

Let

x(𝑡) =
{
𝑓 (𝑎, 𝑡) , 𝑚 (𝑎′, 𝑎, 𝑡) , 𝑐𝑆𝑃(𝑎′, 𝑡)1−𝜎 , 𝐷(𝑎, 𝑡),𝜆(𝑎, 𝑡)

}
𝑎,𝑎′≥0

𝝁 (𝑡) =
{
𝜇 𝑓 (𝑎, 𝑡) , 𝜇𝑚 (𝑎′, 𝑎, 𝑡) , 𝜇𝑚 𝑓 (𝑎′, 𝑡) , 𝜇𝑐 (𝑎, 𝑡) , 𝜇𝐷 (𝑎, 𝑡) , 𝜇𝜆

}
𝑎,𝑎′≥0

where x(𝑡) is a set of control variables and 𝝁 (𝑡) is a set of shadow values.

The Hamiltonian is

ℋ
(
𝑡 , x(𝑡), 𝝁 (𝑡)

)
=

log

(∫
𝑐𝑆𝑃(𝑎, 𝑡)1−𝜎𝐷𝑆𝑃(𝑎, 𝑡) 𝑓 (𝑎, 𝑡)𝑑𝑎

)
+

∫
𝜇 𝑓 (𝑎, 𝑡)

[
− 𝜕

𝜕𝑎
𝑓 (𝑎, 𝑡) + (𝜆(𝑎, 𝑡) − 𝛿𝐹) 𝑓 (𝑎, 𝑡) + 𝜆𝐸𝜹(𝑎)

]
𝑑𝑎

+
∫ ∫

𝜇𝑚 (𝑎′, 𝑎, 𝑡)
[
− 𝜕

𝜕𝑎
𝑚(𝑎′, 𝑎, 𝑡) − 𝜕

𝜕𝑎′
𝑚(𝑎′, 𝑎, 𝑡) + (𝜆 (𝑎′, 𝑡) − 𝛿𝐹 − 𝛿𝑀)𝑚(𝑎′, 𝑎, 𝑡) + 𝜁

𝑓 (𝑎′, 𝑡)
𝑁 𝑓

+ 𝜁0𝜆𝐸

𝑁 𝑓
𝜹(𝑎′)

]
𝑑𝑎′𝑑𝑎

+
∫

𝜇𝑚 𝑓 (𝑎, 𝑡)
[
𝜁0

𝑓 (𝑎, 𝑡)
𝑁 𝑓

− 𝑚(𝑎, 0, 𝑡)
]
𝑑𝑎

+
∫

𝜇𝐷 (𝑎, 𝑡)
[ (

1 − 𝛽
) ∫ [

𝑐𝑆𝑃(𝑎′, 𝑡)
] 𝛽

1−𝛽 (𝜎−1)
𝐷𝑆𝑃(𝑎′)𝑚(𝑎′, 𝑎, 𝑡)𝑑𝑎′ − 𝐷𝑆𝑃(𝑎, 𝑡)

]
𝑑𝑎

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

+
∫

𝜇𝑐 (𝑎, 𝑡)
[(∫

𝑐𝑆𝑃(𝑎′, 𝑡)1−𝜎𝑚(𝑎′, 𝑎, 𝑡)𝑑𝑎′
)

1−𝛽
− 𝑐𝑆𝑃 (𝑎, 𝑡)1−𝜎

]
𝑑𝑎

+ 𝜇𝜆 (𝑡)
[
1 −

∫
𝜙 (𝜆(𝑎, 𝑡)) 𝑓 (𝑎, 𝑡)𝑑𝑎

]
In the following, we focus on the stationary version of the social planner’s problem. Note

that

𝑐𝑆𝑃(𝑎)1−𝜎𝐷𝑆𝑃(𝑎)∫
𝑐𝑆𝑃(𝑎)1−𝜎𝐷𝑆𝑃(𝑎) 𝑓 (𝑎)𝑑𝑎

= 𝛽
𝑐𝑆𝑃(𝑎)1−𝜎𝐷𝑆𝑃(𝑎)

(𝑃𝑆𝑃)1−𝜎

= 𝛽

(
𝑐𝑆𝑃(𝑎)
𝑃𝑆𝑃

)
1−𝜎

𝐷𝑆𝑃(𝑎)

Next, we conjecture

𝜇𝐷 (𝑎) =
(
𝑐𝑆𝑃(𝑎)
𝑃𝑆𝑃

)
1−𝜎

𝑓 (𝑎)
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To verify that, taking a first order condition w.r.t. 𝑐(𝑎)1−𝜎,

0 =
𝐷𝑆𝑃(𝑎) 𝑓 (𝑎)∫

𝑐𝑆𝑃(𝑎)1−𝜎𝐷𝑆𝑃(𝑎) 𝑓 (𝑎)𝑑𝑎
− 𝛽

∫
𝜇𝐷 (𝑎′)

[
𝑐𝑆𝑃(𝑎)

]− 𝜎−1

1−𝛽 𝐷𝑆𝑃(𝑎)𝑚(𝑎′, 𝑎)𝑑𝑎′

=𝛽
𝐷𝑆𝑃(𝑎) 𝑓 (𝑎)
(𝑃𝑆𝑃)1−𝜎

− 𝛽

∫
𝑐𝑆𝑃(𝑎′)1−𝜎 𝑓 (𝑎′)

(𝑃𝑆𝑃)1−𝜎
[
𝑐𝑆𝑃(𝑎)

]− 𝜎−1

1−𝛽 𝐷𝑆𝑃(𝑎)𝑚(𝑎′, 𝑎)𝑑𝑎′

So

𝛽𝐷𝑆𝑃(𝑎) = 𝛽

∫
𝑐𝑆𝑃(𝑎′)1−𝜎

[
𝑐𝑆𝑃(𝑎)

]− 𝜎−1

1−𝛽 𝐷𝑆𝑃(𝑎)𝑚(𝑎′, 𝑎) 𝑓 (𝑎′)
𝑓 (𝑎) 𝑑𝑎′

= 𝛽
[
𝑐𝑆𝑃(𝑎)

]− 𝜎−1

1−𝛽 𝐷𝑆𝑃(𝑎)
∫

𝑐𝑆𝑃(𝑎′)1−𝜎𝑚(𝑎′, 𝑎)𝑑𝑎′

= 𝛽𝐷𝑆𝑃(𝑎)

which is a desired result.

First order conditions w.r.t. 𝐷𝑆𝑃(𝑎) gives

𝜇𝐷 (𝑎) =
𝑐𝑆𝑃(𝑎)1−𝜎 𝑓 (𝑎)∫

𝑐𝑆𝑃(𝑎)1−𝜎𝐷𝑆𝑃(𝑎) 𝑓 (𝑎)𝑑𝑎
+

(
1 − 𝛽

) ∫
𝜇𝐷 (𝑎′)

[
𝑐𝑆𝑃(𝑎)

] 𝛽(𝜎−1)
1−𝛽 𝑚(𝑎′, 𝑎)𝑑𝑎′.

So,(
𝑐𝑆𝑃(𝑎)
𝑃𝑆𝑃

)
1−𝜎

= 𝛽

(
𝑐𝑆𝑃(𝑎)
𝑃𝑆𝑃

)
1−𝜎

+
(
1 − 𝛽

) ∫ (
𝑐𝑆𝑃(𝑎′)
𝑃𝑆𝑃

)
1−𝜎 [

𝑐𝑆𝑃(𝑎)
] 𝛽(𝜎−1)

1−𝛽 𝑓 (𝑎′)𝑚(𝑎′, 𝑎)
𝑓 (𝑎) 𝑑𝑎′.

So,

𝑐𝑆𝑃(𝑎)
1−𝜎
1−𝛽 =

∫
𝑐𝑆𝑃(𝑎′)1−𝜎 𝑓 (𝑎′)𝑚(𝑎′, 𝑎)

𝑓 (𝑎) 𝑑𝑎′

So, we recovered cost functions:

𝑐𝑆𝑃(𝑎)1−𝜎 =

(∫
𝑐𝑆𝑃(𝑎′)1−𝜎𝑚(𝑎′, 𝑎)𝑑𝑎′

)
1−𝛽

(48)

First order conditions w.r.t. 𝑓 (𝑎) gives

𝜌𝜇 𝑓 (𝑎) =

𝛽

(
𝑐𝑆𝑃(𝑎)
𝑃𝑆𝑃

)
1−𝜎

𝐷𝑆𝑃(𝑎) + 𝜕

𝜕𝑎
𝜇 𝑓 (𝑎) + 𝜇 𝑓 (𝑎) (𝜆(𝑎) − 𝛿𝐹) − 𝜇𝜆𝜙 (𝜆(𝑎)) + 𝜁

𝑁 𝑓

∫
𝜇𝑚 (𝑎, 𝑎′)𝑑𝑎′ (49)
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First order conditions w.r.t. 𝑚(𝑎′, 𝑎) gives

𝜌𝜇𝑚 (𝑎′, 𝑎) = 𝜕

𝜕𝑎
𝜇𝑚 (𝑎′, 𝑎) + 𝜕

𝜕𝑎′
𝜇𝑚 (𝑎′, 𝑎) + 𝜇𝑚 (𝑎′, 𝑎) (𝜆 (𝑎′) − 𝛿𝐹 − 𝛿𝑀)

+ 𝜇𝐷 (𝑎)
(
1 − 𝛽

) [
𝑐𝑆𝑃(𝑎′)

] 𝛽(𝜎−1)
1−𝛽 𝐷𝑆𝑃(𝑎′)

So,

𝜌𝜇𝑚 (𝑎′, 𝑎) = 𝜕

𝜕𝑎
𝜇𝑚 (𝑎′, 𝑎) + 𝜕

𝜕𝑎′
𝜇𝑚 (𝑎′, 𝑎) + 𝜇𝑚 (𝑎′, 𝑎) (𝜆 (𝑎′) − 𝛿𝐹 − 𝛿𝑀)

+
(
1 − 𝛽

) [
𝑐𝑆𝑃(𝑎′)

] 𝛽(𝜎−1)
1−𝛽 𝐷𝑆𝑃(𝑎′)

(
𝑐𝑆𝑃(𝑎)
𝑃𝑆𝑃

)
1−𝜎

𝑓 (𝑎)

So,(
𝜌 + 𝛿𝐹 + 𝛿𝑀 − 𝜆 (𝑎′)

)
𝜇𝑚 (𝑎′, 𝑎) = 𝜕

𝜕𝑎
𝜇𝑚 (𝑎′, 𝑎) + 𝜕

𝜕𝑎′
𝜇𝑚 (𝑎′, 𝑎)

+ 𝑐𝑆𝑃(𝑎)1−𝜎
(
1 − 𝛽

) [
𝑐𝑆𝑃(𝑎′)

] 𝜎−1

1−𝛽 𝑓 (𝑎)
(
𝑐𝑆𝑃(𝑎′)
𝑃𝑆𝑃

)
1−𝜎

𝐷𝑆𝑃(𝑎′)︸                     ︷︷                     ︸
revenue of a’

(50)

First order conditions w.r.t. 𝜆(𝑎) gives

0 =𝜇 𝑓 (𝑎) 𝑓 (𝑎) +
∫

𝜇𝑚 (𝑎, 𝑎′)𝑚(𝑎, 𝑎′)𝑑𝑎′ − 𝜇𝜆𝜙
′ (𝜆(𝑎)) 𝑓 (𝑎)

So,

𝜆(𝑎) =𝜙′−1

(
1

𝜇𝜆

{
𝜇 𝑓 (𝑎) +

∫
𝜇𝑚 (𝑎, 𝑎′)𝑚(𝑎, 𝑎′)𝑑𝑎′

𝑓 (𝑎)

})
Note that

𝜙′−1(𝑥) =
(
𝜙

𝛾
𝑥

) 1

𝛾−1
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Therefore,

𝜆(𝑎) =
[

𝜙

𝛾𝜇𝜆

{
𝜇 𝑓 (𝑎) +

∫
𝜇𝑚 (𝑎, 𝑎′)𝑚(𝑎, 𝑎′)𝑑𝑎′

𝑓 (𝑎)

}] 1

𝛾−1

Define

𝑉𝑆𝑃(𝑎) ≡ 𝜇 𝑓 (𝑎) +
∫
𝜇𝑚 (𝑎, 𝑎′)𝑚(𝑎, 𝑎′)𝑑𝑎′

𝑓 (𝑎)
𝑉𝑀(𝑎′, 𝑎) ≡ 𝜇𝑚 (𝑎′, 𝑎)

𝑤𝑆𝑃
𝐻 ≡ 𝜇𝜆

From (50), (changing 𝑎 and 𝑎′)

(
𝜌 + 𝛿𝐹 + 𝛿𝑀 − 𝜆 (𝑎)

)
𝜇𝑚 (𝑎, 𝑎′) = 𝜕

𝜕𝑎
𝜇𝑚 (𝑎, 𝑎′) + 𝜕

𝜕𝑎′
𝜇𝑚 (𝑎, 𝑎′)

+ 𝑐𝑆𝑃(𝑎′)1−𝜎
(
1 − 𝛽

) [
𝑐𝑆𝑃(𝑎)

] 𝜎−1

1−𝛽 𝑓 (𝑎′)
(
𝑐𝑆𝑃(𝑎)
𝑃𝑆𝑃

)
1−𝜎

𝐷𝑆𝑃(𝑎)

Multiply 𝑚(𝑎, 𝑎′) and divide by 𝑓 (𝑎) and integrate over 𝑎′(
𝜌 + 𝛿𝐹 + 𝛿𝑀 − 𝜆 (𝑎)

) ∫
𝜇𝑚 (𝑎, 𝑎′) 𝑚(𝑎, 𝑎′)

𝑓 (𝑎) 𝑑𝑎′ =

𝜕

𝜕𝑎

∫
𝜇𝑚 (𝑎, 𝑎′) 𝑚(𝑎, 𝑎′)

𝑓 (𝑎) 𝑑𝑎′

+
(
1 − 𝛽

)
𝑟𝑆𝑃(𝑎)

∫
𝑐𝑆𝑃(𝑎′)1−𝜎∫

𝑐𝑆𝑃(𝑎′′)1−𝜎𝑚(𝑎′′, 𝑎)𝑑𝑎′
𝑚(𝑎, 𝑎′) 𝑓 (𝑎′)

𝑓 (𝑎) 𝑑𝑎′

So(
𝜌 + 𝛿𝐹 + 𝛿𝑀 − 𝜆 (𝑎)

) ∫
𝜇𝑚 (𝑎, 𝑎′) 𝑚(𝑎, 𝑎′)

𝑓 (𝑎) 𝑑𝑎′ =
𝜕

𝜕𝑎

∫
𝜇𝑚 (𝑎, 𝑎′) 𝑚(𝑎, 𝑎′)

𝑓 (𝑎) 𝑑𝑎′

+
(
1 − 𝛽

)
𝑟𝑆𝑃(𝑎)

∫
𝑐𝑆𝑃(𝑎′)1−𝜎𝑚(𝑎′, 𝑎)𝑑𝑎′∫
𝑐𝑆𝑃(𝑎′′)1−𝜎𝑚(𝑎′′, 𝑎)𝑑𝑎′︸                          ︷︷                          ︸

=1
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So, (
𝜌 + 𝛿𝐹 + 𝛿𝑀 − 𝜆 (𝑎)

) ∫
𝜇𝑚 (𝑎, 𝑎′) 𝑚(𝑎, 𝑎′)

𝑓 (𝑎) 𝑑𝑎′ =
𝜕

𝜕𝑎

∫
𝜇𝑚 (𝑎, 𝑎′) 𝑚(𝑎, 𝑎′)

𝑓 (𝑎) 𝑑𝑎′ (51)

+
(
1 − 𝛽

)
𝑟𝑆𝑃(𝑎),

From (49) + (51)(
𝜌 + 𝛿𝐹 − 𝜆(𝑎)

)
𝑉𝑆𝑃(𝑎) = 𝑟𝑆𝑃(𝑎)+ 𝜕

𝜕𝑎
𝑉𝑆𝑃(𝑎)−𝑤𝑆𝑃

𝐻 𝜙 (𝜆(𝑎))+
∫

𝑉𝑀 (𝑎, 𝑎′)
{
𝜁
𝑁 𝑓

− 𝛿𝑀
𝑚(𝑎, 𝑎′)
𝑓 (𝑎)

}
𝑑𝑎′,

where

𝑟𝑆𝑃(𝑎) =
(
𝑐𝑆𝑃(𝑎)
𝑃𝑆𝑃

)
1−𝜎

𝐷𝑆𝑃(𝑎).

From (50),(
𝜌 + 𝛿𝐹 + 𝛿𝑀 − 𝜆 (𝑎)

)
𝑉𝑀 (𝑎, 𝑎′) = 𝜕

𝜕𝑎
𝑉𝑀 (𝑎, 𝑎′) + 𝜕

𝜕𝑎′
𝑉𝑀 (𝑎, 𝑎′)

+ 𝑐𝑆𝑃(𝑎′)1−𝜎
(
1 − 𝛽

) [
𝑐𝑆𝑃(𝑎)

] 𝜎−1

1−𝛽 𝑓 (𝑎′)𝑟𝑆𝑃(𝑎)

(
𝜌 + 𝛿𝐹 + 𝛿𝑀 − 𝜆 (𝑎′)

)
𝜇𝑚 (𝑎′, 𝑎) = 𝜕

𝜕𝑎
𝜇𝑚 (𝑎′, 𝑎) + 𝜕

𝜕𝑎′
𝜇𝑚 (𝑎′, 𝑎)

+ 𝑐𝑆𝑃(𝑎)1−𝜎
(
1 − 𝛽

) [
𝑐𝑆𝑃(𝑎′)

] 𝜎−1

1−𝛽 𝑓 (𝑎)
(
𝑐𝑆𝑃(𝑎′)
𝑃𝑆𝑃

)
1−𝜎

𝐷𝑆𝑃(𝑎′)︸                     ︷︷                     ︸
revenue of a’

(52)

Inserting (48),(
𝜌 + 𝛿𝐹 + 𝛿𝑀 − 𝜆 (𝑎)

)
𝑉𝑀 (𝑎, 𝑎′) = 𝜕

𝜕𝑎
𝑉𝑀 (𝑎, 𝑎′) + 𝜕

𝜕𝑎′
𝑉𝑀 (𝑎, 𝑎′) + 𝑟𝑆𝑃(𝑎)

(
1 − 𝛽

)
Ω(𝑎′, 𝑎) 𝑓 (𝑎′)

where

Ω(𝑎′, 𝑎) = 𝑐𝑆𝑃(𝑎′)1−𝜎∫
𝑐𝑆𝑃(𝑎′′)1−𝜎𝑚(𝑎′′, 𝑎)𝑑𝑎′′
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E Numerical Appendix

Product Distribution 𝑓

We solve the model with finite difference methods. Throughout this section, to construct

the derivative matrices, we use a backward approximation when the drift of the state

variable is positive, and a forward approximation when the drift of the state is negative.

Notice that the stationary distribution is the solution for the following differential equation:

0 = −𝜕 𝑓 (𝑎)
𝜕𝑎

+ (𝜆(𝑎) − 𝛿𝐹) 𝑓 (𝑎) + 𝜆𝐸𝜹(𝑎) (53)

We now discretize 𝑎 on an evenly spaced 𝑁𝑎 × 1. Let 𝐷𝑎 be the 𝑁𝑎 × 𝑁𝑎 matrix that, when

pre-multiplying 𝑓 , gives an approximation of 𝑓𝑎 . Analogously, define 𝐷𝑎 :

𝑓𝑎 = 𝐷𝑎 𝑓

Vectorize (53) and obtain,

𝑓 = −{−𝐷𝑎 + 𝜆 − 𝛿𝐹}−1 𝜆𝐸𝜹

where the element of 𝑁𝑎 vector 𝑓 consists of 𝑓 (𝑎), the element of 𝑁𝑎 vector 𝜆 consists of

𝜆 (𝑎), and the element of 𝑁𝑎 vector 𝜹 consists of 𝜹(𝑎)

Matched Product Distribution 𝑚

The distributions of matched products 𝑚(𝑎′, 𝑎) is given by

𝜕

𝜕𝑎
𝑚(𝑎′, 𝑎) = − 𝜕

𝜕𝑎′
𝑚(𝑎′, 𝑎) + (𝜆 (𝑎′) − 𝛿𝐹 − 𝛿𝑀)𝑚(𝑎′, 𝑎) + 𝜁0𝜆𝐸

𝑁
𝑓 (𝑎′) + 𝜁0

𝜆𝐸

𝑁 𝑓
𝜹(𝑎′)

subject to the boundary condition 𝑚(𝑎′; 0) = 0. Vectorize this, and obtain

𝑚 − 𝑚−𝑑𝑎
𝑑𝑎

= (−𝐷𝑎 + 𝜆 (𝑎′) − 𝛿𝐹 − 𝛿𝑀)𝑚 + 𝜁0𝜆𝐸

𝑁
𝑓 + 𝜁0

𝜆𝐸

𝑁 𝑓
𝜹

𝑚 − 𝑚−𝑑𝑎 = 𝑑𝑎 (−𝐷𝑎 + 𝜆 (𝑎′) − 𝛿𝐹 − 𝛿𝑀)𝑚 + 𝑑𝑎
𝜁0𝜆𝐸

𝑁
𝑓 + 𝑑𝑎𝜁0

𝜆𝐸

𝑁 𝑓
𝜹

𝑚 = {𝐼𝑎 − 𝑑𝑎 (−𝐷𝑎 + 𝜆 (𝑎′) − 𝛿𝐹 − 𝛿𝑀)}−1

(
𝑚−𝑑𝑎 + 𝑑𝑎

𝜁0𝜆𝐸

𝑁
𝑓 + 𝑑𝑎𝜁0

𝜆𝐸

𝑁 𝑓
𝜹

)
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Starting from 𝑚(·; 0) = 0, the forward iteration of the above vectorized equation gives

the distributions of matched products 𝑚(𝑎′, 𝑎) for each 𝑎. Note that 𝑚(𝑎′, 𝑎) converges

as 𝑎 becomes sufficiently large. Therefore, we only need to forward iterate until 𝑚(𝑎′, 𝑎)
converges.

Value Function 𝑉

Let Δ denote step-size and 𝜏 the iteration of the algorithm. Then given𝑉𝜏−1 (𝑎), the implicit

method gives an update

1

Δ

(
𝑉𝜏 (𝑎) −𝑉𝜏−1 (𝑎)

)
+

(
𝜌 + 𝛿𝐹

)
𝑉𝜏 (𝑎) = 𝜋 (𝑎) +𝑉𝜏

𝑎 (𝑎) + 𝜆 (𝑎)𝑉𝜏 (𝑎) − 𝑤𝐻𝜙 (𝜆 (𝑎))

where 𝜋 (𝑎) =
(
1 − 1

𝜇

) (
𝜇𝑐(𝑎)
𝑃

)
1−𝜎

𝐷(𝑎). Rearranging this,(
1

Δ
+ 𝜌 + 𝛿𝐹 − 𝜆 (𝑎)

)
𝑉𝜏 (𝑎) −𝑉𝜏

𝑎 (𝑎) = 𝜋 (𝑎) − 𝑤𝐻𝜙 (𝜆 (𝑎)) + 1

Δ
𝑉𝜏−1 (𝑎)

Now, we vectorize the HJB equation:(
1

Δ
+ 𝜌 + 𝛿𝐹 −Λ − 𝐷𝑎

)
𝑉𝜏 = 𝜋 − 𝑤𝐻𝜙(𝜆) +

1

Δ
𝑉𝜏−1

𝑉𝜏 =

{
1

Δ
+ 𝜌 + 𝛿𝐹 −Λ − 𝐷𝑎

}−1
(
𝜋 − 𝑤𝐻𝜙(𝜆) +

1

Δ
𝑉𝜏−1

)
where the element of the 𝑁𝑎-dimensional vector 𝑉𝜏

consists of 𝑉𝜏 (𝑎), the element of

the 𝑁𝑎-dimensional vector 𝜋 consists of 𝜋 (𝑎), Λ ≡ diag (𝜆 (𝑎𝑖)) collects the age-specific

innovation rates along the grid {𝑎𝑖}𝑁𝑎

𝑖=1
, and 𝜙(𝜆) denotes the vector whose entries are

𝜙
(
𝜆 (𝑎𝑖)

)
. The implicit method works by updating 𝑉𝜏

through the above equation.

Social Matching Value Function 𝑉𝑀(
𝜌 + 𝛿𝐹 + 𝛿𝑀 − 𝜆 (𝑎)

)
𝑉𝑀 (𝑎, 𝑎′) = 𝜕

𝜕𝑎
𝑉𝑀 (𝑎, 𝑎′)+ 𝜕

𝜕𝑎′
𝑉𝑀 (𝑎, 𝑎′)+

(
1 − 𝛽

)
𝑟𝑆𝑃(𝑎)Ω(𝑎′, 𝑎) 𝑓 (𝑎′)
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We now discretize 𝑎 and 𝑎′ on evenly spaced grids with 𝑁𝑎 nodes each. Stack these

according to: ©­­­­­­­­­­­­­­­«

𝑎1, 𝑎
′
1

𝑎2, 𝑎
′
1

...

𝑎𝑁𝑎 , 𝑎
′
1

...

𝑎1, 𝑎
′
𝑁𝑎

...

𝑎𝑁𝑎 , 𝑎
′
𝑁𝑎

ª®®®®®®®®®®®®®®®¬
(
𝜌 + 𝛿𝐹 + 𝛿𝑀 −Λ𝑎 − 𝐷𝑎 − 𝐷𝑎′

)
𝑉𝑀 = 𝐴

𝑉𝑀 =
(
𝜌 + 𝛿𝐹 + 𝛿𝑀 −Λ𝑎 − 𝐷𝑎 − 𝐷𝑎′

)−1

𝐴

where the 𝑁2

𝑎 -dimensional vector 𝑉𝑀
collects 𝑉𝑀 (𝑎, 𝑎′) evaluated on the stacked grid,

Λ𝑎 ≡ 𝐼𝑁𝑎 ⊗ Λ applies the age-specific innovation rates to the first argument, 𝐷𝑎 and 𝐷𝑎′ are

the finite-difference operators with respect to 𝑎 and 𝑎′, and the 𝑁2

𝑎 -dimensional vector 𝐴

has elements

𝐴 =
(
1 − 𝛽

)
𝑟𝑆𝑃(𝑎)Ω(𝑎′, 𝑎) 𝑓 (𝑎′) for each stacked pair (𝑎, 𝑎′).
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